Suppr超能文献

感应电动机的早期和极早期多标签故障诊断。

Early and extremely early multi-label fault diagnosis in induction motors.

机构信息

Departamento de Ingeniería Informática, Universidad de Burgos, 09006 Burgos, Spain.

Engineering Faculty, Autonomous University of Querétaro, San Juan del Rio 76806, Mexico.

出版信息

ISA Trans. 2020 Nov;106:367-381. doi: 10.1016/j.isatra.2020.07.002. Epub 2020 Jul 4.

Abstract

The detection of faulty machinery and its automated diagnosis is an industrial priority because efficient fault diagnosis implies efficient management of the maintenance times, reduction of energy consumption, reduction in overall costs and, most importantly, the availability of the machinery is ensured. Thus, this paper presents a new intelligent multi-fault diagnosis method based on multiple sensor information for assessing the occurrence of single, combined, and simultaneous faulty conditions in an induction motor. The contribution and novelty of the proposed method include the consideration of different physical magnitudes such as vibrations, stator currents, voltages, and rotational speed as a meaningful source of information of the machine condition. Moreover, for each available physical magnitude, the reduction of the original number of attributes through the Principal Component Analysis leads to retain a reduced number of significant features that allows achieving the final diagnosis outcome by a multi-label classification tree. The effectiveness of the method was validated by using a complete set of experimental data acquired from a laboratory electromechanical system, where a healthy and seven faulty scenarios were assessed. Also, the interpretation of the results do not require any prior expert knowledge and the robustness of this proposal allows its application in industrial applications, since it may deal with different operating conditions such as different loads and operating frequencies. Finally, the performance was evaluated using multi-label measures, which to the best of our knowledge, is an innovative development in the field condition monitoring and fault identification.

摘要

检测有故障的机器及其自动诊断是工业界的首要任务,因为有效的故障诊断意味着能够有效地管理维护时间、降低能源消耗、降低总体成本,最重要的是,确保机器的可用性。因此,本文提出了一种新的基于多传感器信息的智能多故障诊断方法,用于评估感应电动机中单一、组合和同时发生故障的情况。所提出方法的贡献和新颖之处在于考虑了不同的物理量,如振动、定子电流、电压和转速,它们是机器状态的有意义的信息源。此外,对于每个可用的物理量,通过主成分分析(Principal Component Analysis)减少原始属性的数量,可以保留数量较少的重要特征,从而通过多标签分类树实现最终的诊断结果。该方法的有效性通过使用从机电实验室系统获得的完整的一组实验数据进行了验证,其中评估了健康和七种故障情况。此外,结果的解释不需要任何事先的专家知识,并且该方法的稳健性允许将其应用于工业应用中,因为它可以处理不同的工作条件,如不同的负载和工作频率。最后,使用多标签度量标准评估了性能,据我们所知,这是在状态监测和故障识别领域的创新性发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验