Mandecki W, Bolling T J
Corporate Molecular Biology, Abott Laboratories, Abbott Park, IL 60064.
Gene. 1988 Aug 15;68(1):101-7. doi: 10.1016/0378-1119(88)90603-8.
An accurate, fast and simple method is presented for synthesis of a gene, or any DNA fragment with a defined sequence. The method is based on the observation that large (approx. 100 bp long) inserts can be cloned into a plasmid using a technique of oligodeoxynucleotide (oligo)-directed double-strand (ds) break repair. The procedure involves transformation of Escherichia coli with a denatured mixture of an insert-carrying oligo and linearized plasmid DNA [Mandecki, Proc. Natl. Acad. Sci. USA 83 (1986) 7177-7181]. The nucleotide (nt) sequences are inserted between two FokI restriction nuclease sites in one of four pUC-derived plasmids. Since FokI makes a staggered ds break at a DNA site 9 and 13 nt away from its recognition site, upon cleavage of the plasmid DNA with FokI, a restriction fragment is liberated that by design contains unique 4-nt-long 5'-protruding ends. The uniqueness of ends permits efficient and directed simultaneous ligation of several restriction fragments to form a gene. The method offers flexibility due to the modular-type assembly and does not require any restriction sites within the constructed gene. The sequence error rate is low: about one error per 4000 bp of DNA cloned. Synthetic DNA for only one DNA strand needs to be provided. The method was applied to the synthesis of a gene fragment encoding the N-terminal 143 amino acid residues of the human immunodeficiency virus transmembrane protein (p41).