Suppr超能文献

用于识别RNA 5-甲基胞嘧啶位点的计算方法的小型综述。

A Mini-review of the Computational Methods Used in Identifying RNA 5-Methylcytosine Sites.

作者信息

Li Jianwei, Huang Yan, Zhou Yuan

机构信息

1Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin, China; 2Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing, China.

出版信息

Curr Genomics. 2020 Jan;21(1):3-10. doi: 10.2174/2213346107666200219124951.

Abstract

RNA 5-methylcytosine (mC) is one of the pillars of post-transcriptional modification (PTCM). A growing body of evidence suggests that mC plays a vital role in RNA metabolism. Accurate localization of RNA mC sites in tissue cells is the premise and basis for the in-depth understanding of the functions of mC. However, the main experimental methods of detecting mC sites are limited to varying degrees. Establishing a computational model to predict modification sites is an excellent complement to wet experiments for identifying mC sites. In this review, we summarized some available mC predictors and discussed the characteristics of these methods.

摘要

RNA 5-甲基胞嘧啶(mC)是转录后修饰(PTCM)的关键组成部分之一。越来越多的证据表明,mC在RNA代谢中起着至关重要的作用。在组织细胞中准确定位RNA mC位点是深入了解mC功能的前提和基础。然而,检测mC位点的主要实验方法都受到不同程度的限制。建立一个计算模型来预测修饰位点是识别mC位点的湿实验的极佳补充。在这篇综述中,我们总结了一些现有的mC预测工具,并讨论了这些方法的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae4d/7324889/c557d59578e2/CG-21-3_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验