Suppr超能文献

由多个振荡信号驱动的随机霍奇金-赫胥黎神经元模型中的离子通道阻塞

Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals.

作者信息

Zhou Xiuying, Xu Ying, Wang Guowei, Jia Ya

机构信息

Department of Physics, Central China Normal University, Wuhan, 430079 China.

出版信息

Cogn Neurodyn. 2020 Aug;14(4):569-578. doi: 10.1007/s11571-020-09593-7. Epub 2020 May 4.

Abstract

Ionic channel blockage and multiple oscillatory signals play an important role in the dynamical response of pulse sequences. The effects of ionic channel blockage and ionic channel noise on the discharge behaviors are studied in Hodgkin-Huxley neuronal model with multiple oscillatory signals. It is found that bifurcation points of spontaneous discharge are altered through tuning the amplitude of multiple oscillatory signals, and the discharge cycle is changed by increasing the frequency of multiple oscillatory signals. The effects of ionic channel blockage on neural discharge behaviors indicate that the neural excitability can be suppressed by the sodium channel blockage, however, the neural excitability can be reversed by the potassium channel blockage. There is an optimal blockage ratio of potassium channel at which the electrical activity is the most regular, while the order of neural spike is disrupted by the sodium channel blockage. In addition, the frequency of spike discharge is accelerated by increasing the ionic channel noise, the firing of neuron becomes more stable if the ionic channel noise is appropriately reduced. Our results might provide new insights into the effects of ionic channel blockages, multiple oscillatory signals, and ionic channel noises on neural discharge behaviors.

摘要

离子通道阻塞和多个振荡信号在脉冲序列的动力学响应中起着重要作用。在具有多个振荡信号的霍奇金-赫胥黎神经元模型中,研究了离子通道阻塞和离子通道噪声对放电行为的影响。研究发现,通过调节多个振荡信号的幅度可以改变自发放电的分岔点,通过增加多个振荡信号的频率可以改变放电周期。离子通道阻塞对神经放电行为的影响表明,钠通道阻塞可抑制神经兴奋性,而钾通道阻塞可逆转神经兴奋性。存在一个钾通道的最佳阻塞率,此时电活动最规则,而钠通道阻塞会破坏神经尖峰的顺序。此外,增加离子通道噪声会加速尖峰放电频率,适当降低离子通道噪声会使神经元的放电变得更稳定。我们的结果可能为离子通道阻塞、多个振荡信号和离子通道噪声对神经放电行为的影响提供新的见解。

相似文献

1
Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals.
Cogn Neurodyn. 2020 Aug;14(4):569-578. doi: 10.1007/s11571-020-09593-7. Epub 2020 May 4.
3
Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels.
J Theor Biol. 2009 Nov 7;261(1):83-92. doi: 10.1016/j.jtbi.2009.07.006. Epub 2009 Jul 15.
4
Model of gamma frequency burst discharge generated by conditional backpropagation.
J Neurophysiol. 2001 Oct;86(4):1523-45. doi: 10.1152/jn.2001.86.4.1523.
5
On the noise-enhancing ability of stochastic Hodgkin-Huxley neuron systems.
Neural Comput. 2010 Jul;22(7):1737-63. doi: 10.1162/neco.2010.07-09-1057.
8
Channel noise effects on first spike latency of a stochastic Hodgkin-Huxley neuron.
Phys Rev E. 2017 Feb;95(2-1):022414. doi: 10.1103/PhysRevE.95.022414. Epub 2017 Feb 24.
9
Stochastic resonance can induce oscillation in a recurrent Hodgkin-Huxley neuron model with added Gaussian noise.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2457-60. doi: 10.1109/IEMBS.2008.4649697.

引用本文的文献

1
Fast-slow dynamics in a memristive ion channel-based bionic circuit.
Cogn Neurodyn. 2024 Dec;18(6):3901-3913. doi: 10.1007/s11571-024-10168-z. Epub 2024 Sep 10.
2
Energy dependence of synchronization mode transitions in the delay-coupled FitzHugh-Nagumo system driven by chaotic activity.
Cogn Neurodyn. 2024 Apr;18(2):685-700. doi: 10.1007/s11571-023-10021-9. Epub 2023 Nov 2.
3
Dynamical effects of memristive electromagnetic induction on a 2D Wilson neuron model.
Cogn Neurodyn. 2024 Apr;18(2):645-657. doi: 10.1007/s11571-023-10014-8. Epub 2023 Oct 17.
4
Loss or gain of function? Effects of ion channel mutations on neuronal firing depend on the neuron type.
Front Neurol. 2023 May 24;14:1194811. doi: 10.3389/fneur.2023.1194811. eCollection 2023.
5
Effects of chaotic activity and time delay on signal transmission in FitzHugh-Nagumo neuronal system.
Cogn Neurodyn. 2022 Aug;16(4):887-897. doi: 10.1007/s11571-021-09743-5. Epub 2021 Nov 6.
6
Autonomous learning of nonlocal stochastic neuron dynamics.
Cogn Neurodyn. 2022 Jun;16(3):683-705. doi: 10.1007/s11571-021-09731-9. Epub 2021 Nov 3.
7
Automatic classification of nerve discharge rhythms based on sparse auto-encoder and time series feature.
BMC Bioinformatics. 2022 Feb 15;22(Suppl 3):619. doi: 10.1186/s12859-022-04592-3.
10
Multiple Firing Patterns in Coupled Hindmarsh-Rose Neurons with a Nonsmooth Memristor.
Neural Plast. 2020 Nov 7;2020:8826369. doi: 10.1155/2020/8826369. eCollection 2020.

本文引用的文献

1
Temperature effect on memristive ion channels.
Cogn Neurodyn. 2019 Dec;13(6):601-611. doi: 10.1007/s11571-019-09547-8. Epub 2019 Jul 4.
2
A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level.
Cogn Neurodyn. 2019 Dec;13(6):579-599. doi: 10.1007/s11571-019-09540-1. Epub 2019 May 23.
3
Adaptive sparse coding based on memristive neural network with applications.
Cogn Neurodyn. 2019 Oct;13(5):475-488. doi: 10.1007/s11571-019-09537-w. Epub 2019 May 4.
4
Bifurcation analysis and diverse firing activities of a modified excitable neuron model.
Cogn Neurodyn. 2019 Aug;13(4):393-407. doi: 10.1007/s11571-019-09526-z. Epub 2019 Mar 2.
5
Neurodynamic analysis of Merkel cell-neurite complex transduction mechanism during tactile sensing.
Cogn Neurodyn. 2019 Jun;13(3):293-302. doi: 10.1007/s11571-018-9507-z. Epub 2018 Sep 22.
6
Energy expenditure computation of a single bursting neuron.
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.
7
Influence of active synaptic pools on the single synaptic event.
Cogn Neurodyn. 2018 Aug;12(4):391-402. doi: 10.1007/s11571-018-9483-3. Epub 2018 Mar 9.
9
An Energy Model of Place Cell Network in Three Dimensional Space.
Front Neurosci. 2018 Apr 25;12:264. doi: 10.3389/fnins.2018.00264. eCollection 2018.
10
Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron.
Cogn Neurodyn. 2018 Jun;12(3):343-349. doi: 10.1007/s11571-018-9475-3. Epub 2018 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验