Ding Xincheng, Feng Chengtao, Wang Ning, Liu Ao, Xu Quan
School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 China.
Cogn Neurodyn. 2024 Dec;18(6):3901-3913. doi: 10.1007/s11571-024-10168-z. Epub 2024 Sep 10.
Electrophysiological properties of ion channels can influence the transport process of ions and the generation of firing patterns in an excitable biological neuron when applying an external stimulus and exceeding the excitable threshold. In this paper, a current stimulus is employed to emulate the external stimulus, and a second-order locally active memristor (LAM) is deployed to characterize the properties of ion channels. Then, a simple bionic circuit possessing the LAM, a capacitor, a DC voltage, and the current stimulus is constructed. Fast-slow dynamical effects of the current stimulus with low- and high-frequency are respectively explored. Numerical simulations disclose that the bionic circuit can generate bursting behaviors for the low-frequency current stimulus and spiking behaviors for the high-frequency current stimulus. Besides, fold and Hopf bifurcation sets are deduced and the bifurcation mechanisms for bursting behaviors are elaborated. Furthermore, the numerically simulated bursting and spiking behaviors are verified by PCB-based hardware experiments. These results reflect the feasibility of the bionic circuit in generating the firing patterns of spiking and bursting behaviors and the external current can be employed to regulate these firing patterns.
当施加外部刺激并超过兴奋阈值时,离子通道的电生理特性会影响离子的传输过程以及可兴奋生物神经元中放电模式的产生。在本文中,采用电流刺激来模拟外部刺激,并部署二阶局部有源忆阻器(LAM)来表征离子通道的特性。然后,构建了一个具有LAM、电容器、直流电压和电流刺激的简单仿生电路。分别探究了低频和高频电流刺激的快慢动力学效应。数值模拟表明,该仿生电路对于低频电流刺激可产生爆发行为,对于高频电流刺激可产生尖峰行为。此外,推导了折叠和霍普夫分岔集,并阐述了爆发行为的分岔机制。此外,基于印刷电路板的硬件实验验证了数值模拟的爆发和尖峰行为。这些结果反映了仿生电路在产生尖峰和爆发行为的放电模式方面的可行性,并且外部电流可用于调节这些放电模式。