Suppr超能文献

由混沌活动驱动的延迟耦合FitzHugh-Nagumo系统中同步模式转变的能量依赖性。

Energy dependence of synchronization mode transitions in the delay-coupled FitzHugh-Nagumo system driven by chaotic activity.

作者信息

Li Xuening, Yu Dong, Yang Lijian, Fu Ziying, Jia Ya

机构信息

Department of Physics, Central China Normal University, Wuhan, 430079 China.

School of Biology, Central China Normal University, Wuhan, 430079 China.

出版信息

Cogn Neurodyn. 2024 Apr;18(2):685-700. doi: 10.1007/s11571-023-10021-9. Epub 2023 Nov 2.

Abstract

Energy absorption and consumption are essential for the activity of single neurons and neuronal networks. The synchronization mode transition and energy dependence in a delay-coupled FitzHugh-Nagumo (FHN) neuronal system driven by chaotic activity are investigated in this paper. With the change of chaotic current intensity, it was found that the synchronization mode of coupled neurons undergoes synchronous state, transition state, anti-phase state, alternating asynchronous and anti-phase state, and chaotic current-induced chaotic state. The Hamiltonian energy is much dependent on the synchronization mode of coupled neurons. The synchronization mode and the Hamiltonian energy of coupled neurons can be modulated by chaotic current intensity, coupling strength and time delay. The introduction of the time delay induces the system to become bistable state. Chaotic current as an external force induced transitions between the synchronous and anti-phase states. Coupling strength is an intrinsic property of the system and can change the properties of the bistable state. Furthermore, the synchronous and anti-phase states appear intermittently with the increasing of time delay. A chained neuronal network is used to prove that the synchronization mode transition of the system of multiple neurons is similar to the two neurons. The results of this paper might help one to understand the intrinsic energy alteration mechanisms of neuronal synchronization.

摘要

能量吸收和消耗对于单个神经元及神经元网络的活动至关重要。本文研究了由混沌活动驱动的延迟耦合FitzHugh-Nagumo(FHN)神经元系统中的同步模式转变和能量依赖性。随着混沌电流强度的变化,发现耦合神经元的同步模式经历同步状态、过渡状态、反相状态、交替异步和反相状态以及混沌电流诱导的混沌状态。哈密顿能量很大程度上依赖于耦合神经元的同步模式。耦合神经元的同步模式和哈密顿能量可通过混沌电流强度、耦合强度和时间延迟进行调制。时间延迟的引入使系统变为双稳态。混沌电流作为外力诱导同步状态和反相状态之间的转变。耦合强度是系统的固有属性,可改变双稳态的性质。此外,随着时间延迟的增加,同步状态和反相状态间歇性出现。使用链式神经元网络证明多个神经元系统的同步模式转变与两个神经元的相似。本文的结果可能有助于人们理解神经元同步的内在能量改变机制。

相似文献

本文引用的文献

3
Energy features in spontaneous up and down oscillations.能量在自发的上下振荡中呈现出特征。
Cogn Neurodyn. 2021 Feb;15(1):65-75. doi: 10.1007/s11571-020-09597-3. Epub 2020 May 29.
5
The place cell activity is information-efficient constrained by energy.位置细胞活动受到能量限制的信息效率。
Neural Netw. 2019 Aug;116:110-118. doi: 10.1016/j.neunet.2019.04.001. Epub 2019 Apr 5.
9
Anticipation in manual tracking with multiple delays.多重延迟下手动跟踪中的预期。
J Exp Psychol Hum Percept Perform. 2017 May;43(5):914-925. doi: 10.1037/xhp0000393. Epub 2017 Feb 23.
10
Cable energy function of cortical axons.皮质轴突的电缆能量功能。
Sci Rep. 2016 Jul 21;6:29686. doi: 10.1038/srep29686.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验