Kolassa Jana, Reichle Rolf H, Liu Qing, Cosh Michael, Bosch David D, Caldwell Todd G, Colliander Andreas, Collins Chandra Holifield, Jackson Thomas J, Livingston Stan J, Moghaddam Mahta, Starks Patrick J
Universities Space Research Association, Columbia, MD.
Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD.
Remote Sens (Basel). 2017 Nov;9(11):1179. doi: 10.3390/rs9111179. Epub 2017 Nov 17.
This study compares different methods to extract soil moisture information through the assimilation of Soil Moisture Active Passive (SMAP) observations. Neural Network (NN) and physically-based SMAP soil moisture retrievals were assimilated into the NASA Catchment model over the contiguous United States for April 2015 to March 2017. By construction, the NN retrievals are consistent with the global climatology of the Catchment model soil moisture. Assimilating the NN retrievals without further bias correction improved the surface and root zone correlations against in situ measurements from 14 SMAP core validation sites (CVS) by 0.12 and 0.16, respectively, over the model-only skill and reduced the surface and root zone ubRMSE by 0.005 m m and 0.001 m m, respectively. The assimilation reduced the average absolute surface bias against the CVS measurements by 0.009 m m, but increased the root zone bias by 0.014 m m. Assimilating the NN retrievals after a localized bias correction yielded slightly lower surface correlation and ubRMSE improvements, but generally the skill differences were small. The assimilation of the physically-based SMAP Level-2 passive soil moisture retrievals using a global bias correction yielded similar skill improvements, as did the direct assimilation of locally bias-corrected SMAP brightness temperatures within the SMAP Level-4 soil moisture algorithm. The results show that global bias correction methods may be able to extract more independent information from SMAP observations compared to local bias correction methods, but without accurate quality control and observation error characterization they are also more vulnerable to adverse effects from retrieval errors related to uncertainties in the retrieval inputs and algorithm. Furthermore, the results show that using global bias correction approaches without a simultaneous re-calibration of the land model processes can lead to a skill degradation in other land surface variables.
本研究通过同化土壤湿度主动被动探测仪(SMAP)的观测数据,比较了提取土壤湿度信息的不同方法。2015年4月至2017年3月期间,在美国本土将神经网络(NN)和基于物理的SMAP土壤湿度反演数据同化到美国国家航空航天局(NASA)的集水区模型中。通过构建,NN反演数据与集水区模型土壤湿度的全球气候学一致。在未进行进一步偏差校正的情况下,同化NN反演数据,相对于仅使用模型的情况,与14个SMAP核心验证站点(CVS)的原位测量相比,地表和根区的相关性分别提高了0.12和0.16,地表和根区的无偏均方根误差(ubRMSE)分别降低了0.005毫米和0.001毫米。同化使相对于CVS测量的平均绝对地表偏差降低了0.009毫米,但根区偏差增加了0.014毫米。在进行局部偏差校正后同化NN反演数据,地表相关性和ubRMSE的改善略有降低,但总体技能差异较小。使用全局偏差校正同化基于物理的SMAP二级被动土壤湿度反演数据,以及在SMAP四级土壤湿度算法中直接同化局部偏差校正后的SMAP亮温,都产生了类似的技能提升。结果表明相比于局部偏差校正方法,全局偏差校正方法可能能够从SMAP观测数据中提取更多独立信息,但如果没有准确的质量控制和观测误差表征,它们也更容易受到与反演输入和算法中的不确定性相关的反演误差的不利影响。此外,结果表明在不同时重新校准陆地模型过程的情况下使用全局偏差校正方法可能会导致其他陆地表面变量的技能退化。