Chan Steven K, Bindlish Rajat, O'Neill Peggy, Jackson Thomas, Njoku Eni, Dunbar Scott, Chaubell Julian, Piepmeier Jeffrey, Yueh Simon, Entekhabi Dara, Colliander Andreas, Chen Fan, Cosh Michael H, Caldwel Todd, Walker Jeffrey, Berg Aaron, McNairn Heather, Thibeault Marc, Martínez-Fernández José, Uldall Frederik, Seyfried Mark, Bosch David, Starks Patrick, Collins Chandra Holifield, Prueger John, van der Velde Rogier, Asanuma Jun, Palecki Michael, Small Eric E, Zreda Marek, Calvet Jean-Christophe, Crow Wade T, Kerr Yann
the NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA.
the NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA.
Remote Sens Environ. 2018 Jan;204:931-941. doi: 10.1016/j.rse.2017.08.025. Epub 2017 Oct 13.
Launched in January 2015, the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) observatory was designed to provide frequent global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using a radar and a radiometer operating at L-band frequencies. Despite a hardware mishap that rendered the radar inoperable shortly after launch, the radiometer continues to operate nominally, returning more than two years of science data that have helped to improve existing hydrological applications and foster new ones. Beginning in late 2016 the SMAP project launched a suite of new data products with the objective of recovering some high-resolution observation capability loss resulting from the radar malfunction. Among these new data products are the SMAP Enhanced Passive Soil Moisture Product that was released in December 2016, followed by the SMAP/Sentinel-1 Active-Passive Soil Moisture Product in April 2017. This article covers the development and assessment of the SMAP Level 2 Enhanced Passive Soil Moisture Product (L2_SM_P_E). The product distinguishes itself from the current SMAP Level 2 Passive Soil Moisture Product (L2_SM_P) in that the soil moisture retrieval is posted on a 9 km grid instead of a 36 km grid. This is made possible by first applying the Backus-Gilbert optimal interpolation technique to the antenna temperature (T) data in the original SMAP Level 1B Brightness Temperature Product to take advantage of the overlapped radiometer footprints on orbit. The resulting interpolated T data then go through various correction/calibration procedures to become the SMAP Level 1C Enhanced Brightness Temperature Product (LiC_TB_E). The LiC_TB_E product, posted on a 9 km grid, is then used as the primary input to the current operational SMAP baseline soil moisture retrieval algorithm to produce L2_SM_P_E as the final output. Images of the new product reveal enhanced visual features that are not apparent in the standard product. Based on data from core validation sites and sparse networks representing different seasons and biomes all over the world, comparisons between L2_SM_P_E and data were performed for the duration of April 1, 2015 - October 30, 2016. It was found that the performance of the enhanced 9 km L2_SM_P_E is equivalent to that of the standard 36 km L2_SM_P, attaining a retrieval uncertainty below 0.040 m/m unbiased root-mean-square error (ubRMSE) and a correlation coefficient above 0.800. This assessment also affirmed that the Single Channel Algorithm using the V-polarized T channel (SCA-V) delivered the best retrieval performance among the various algorithms implemented for L2_SM_P_E, a result similar to a previous assessment for L2_SM_P.
美国国家航空航天局(NASA)的土壤湿度主动被动探测仪(SMAP)于2015年1月发射,旨在利用L波段频率运行的雷达和辐射计,每两到三天对全球高分辨率土壤湿度和冻融状态进行频繁测绘。尽管发射后不久硬件故障导致雷达无法运行,但辐射计仍在正常运行,传回了两年多的科学数据,有助于改进现有水文应用并催生新的应用。从2016年末开始,SMAP项目推出了一系列新的数据产品,目的是弥补因雷达故障导致的一些高分辨率观测能力损失。这些新数据产品包括2016年12月发布的SMAP增强型被动土壤湿度产品,随后是2017年4月发布的SMAP/哨兵 - 1主动 - 被动土壤湿度产品。本文介绍了SMAP二级增强型被动土壤湿度产品(L2_SM_P_E)的开发与评估。该产品与当前的SMAP二级被动土壤湿度产品(L2_SM_P)的区别在于,土壤湿度反演数据发布在9公里网格上,而不是36公里网格上。这是通过首先将巴克斯 - 吉尔伯特最优插值技术应用于原始SMAP一级B亮度温度产品中的天线温度(T)数据来实现的,以利用轨道上辐射计重叠的足迹。然后,所得的插值T数据经过各种校正/校准程序,成为SMAP一级C增强型亮度温度产品(LiC_TB_E)。发布在9公里网格上的LiC_TB_E产品随后用作当前运行的SMAP基线土壤湿度反演算法的主要输入,以生成L2_SM_P_E作为最终输出。新产品的图像显示出标准产品中不明显的增强视觉特征。基于代表世界各地不同季节和生物群落的核心验证站点和稀疏网络的数据,在2015年4月1日至2016年10月30日期间对L2_SM_P_E和数据进行了比较。结果发现,增强后的9公里L2_SM_P_E的性能与标准的36公里L2_SM_P相当,反演不确定度低于0.040 m/m无偏均方根误差(ubRMSE),相关系数高于0.800。该评估还确认,在为L2_SM_P_E实施的各种算法中,使用V极化T通道的单通道算法(SCA - V)具有最佳反演性能,这一结果与之前对L2_SM_P的评估类似。