Kolassa J, Reichle R H, Liu Q, Alemohammad S H, Gentine P, Aida K, Asanuma J, Bircher S, Caldwell T, Colliander A, Cosh M, Collins C Holifield, Jackson T J, Martínez-Fernández J, McNairn H, Pacheco A, Thibeault M, Walker J P
Universities Space Research Association/NPP, Columbia, MD, USA.
Global Modelling and Assimilation Office, NASA Goddard Spaceflight Center, Greenbelt, MD, USA.
Remote Sens Environ. 2018 Jan;204:43-59. doi: 10.1016/j.rse.2017.10.045. Epub 2017 Nov 11.
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 mm, 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 mm, 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.
开发了一种神经网络(NN)算法,利用土壤湿度主动被动探测(SMAP)卫星的被动微波观测数据、美国国家航空航天局戈达德地球观测系统第5版(GEOS-5)陆地建模系统的地表土壤温度以及基于中分辨率成像光谱仪的植被含水量,以2 - 3天的重复频率估算2015年4月至2017年3月的全球地表土壤湿度。该神经网络在GEOS-5土壤湿度目标数据上进行训练,使神经网络的估算结果与GEOS-5气候学数据一致,从而最终可在不进行进一步偏差校正的情况下被同化到该模型中。与原位土壤湿度测量值相比,神经网络反演结果的平均无偏均方根误差(ubRMSE)、相关性和异常相关性,针对SMAP核心验证站点测量值分别为0.037毫米、0.70和0.66,针对国际土壤湿度网络(ISMN)测量值分别为0.026毫米、0.58和0.48。在核心验证站点,神经网络反演结果的技能显著高于GEOS-5模型估算结果,且相关性技能略低于SMAP二级被动(L2P)产品。与L2P反演结果相比,较低的ubRMSE以及在基于物理的反演中的辅助参数不确定时更高的技能反映了神经网络方法的可行性。针对ISMN测量值,两种反演产品的技能更具可比性。与先进微波扫描辐射计2(AMSR2)和先进散射计(ASCAT)土壤湿度反演结果的三重配置分析表明,神经网络和L2P反演误差具有相似的空间分布,但在植被茂密地区和过渡带,神经网络反演误差通常较低。