Suppr超能文献

围产期损伤后新生儿脑生长中基于脑沟的协方差网络的破坏和补偿。

Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury.

机构信息

Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA.

Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA.

出版信息

Cereb Cortex. 2020 Nov 3;30(12):6238-6253. doi: 10.1093/cercor/bhaa181.

Abstract

Perinatal brain injuries in preterm neonates are associated with alterations in structural neurodevelopment, leading to impaired cognition, motor coordination, and behavior. However, it remains unknown how such injuries affect postnatal cortical folding and structural covariance networks, which indicate functional parcellation and reciprocal brain connectivity. Studying 229 magnetic resonance scans from 158 preterm neonates (n = 158, mean age = 28.2), we found that severe injuries including intraventricular hemorrhage, periventricular leukomalacia, and ventriculomegaly lead to significantly reduced cortical folding and increased covariance (hyper-covariance) in only the early (<31 weeks) but not middle (31-35 weeks) or late stage (>35 weeks) of the third trimester. The aberrant hyper-covariance may drive acceleration of cortical folding as a compensatory mechanism to "catch-up" with normal development. By 40 weeks, preterm neonates with/without severe brain injuries exhibited no difference in cortical folding and covariance compared with healthy term neonates. However, graph theory-based analysis showed that even after recovery, severely injured brains exhibit a more segregated, less integrated, and overall inefficient network system with reduced integration strength in the dorsal attention, frontoparietal, limbic, and visual network systems. Ultimately, severe perinatal injuries cause network-level deviations that persist until the late stage of the third trimester and may contribute to neurofunctional impairment.

摘要

早产儿围产期脑损伤与结构神经发育改变有关,导致认知、运动协调和行为受损。然而,目前尚不清楚这些损伤如何影响产后皮质折叠和结构协变网络,而这些网络则表明功能分区和大脑的相互连通性。本研究对 158 名早产儿的 229 次磁共振扫描(n=158,平均年龄=28.2)进行了研究,我们发现严重的损伤,包括脑室周围出血、脑室周围白质软化和脑室扩大,仅在第三孕期的早期(<31 周)而不是中期(31-35 周)或晚期(>35 周)导致皮质折叠减少和协变(超协变)增加。异常的超协变可能是一种代偿机制,以“追赶”正常发育,从而加速皮质折叠。到 40 周时,有/无严重脑损伤的早产儿与健康足月产儿相比,皮质折叠和协变没有差异。然而,基于图论的分析表明,即使在恢复后,严重受损的大脑仍然表现出更离散、更不集成、整体效率更低的网络系统,其背侧注意、额顶叶、边缘和视觉网络系统的整合强度降低。最终,严重的围产期损伤导致网络层面的偏差,这种偏差一直持续到第三孕期的晚期,可能导致神经功能障碍。

相似文献

2
Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates.
Eur Radiol. 2024 Jun;34(6):3601-3611. doi: 10.1007/s00330-023-10414-8. Epub 2023 Nov 14.
3
Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns.
Neuroimage. 2021 Jan 15;225:117440. doi: 10.1016/j.neuroimage.2020.117440. Epub 2020 Oct 8.
4
Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.
Neuroimage Clin. 2018 Feb 3;18:399-406. doi: 10.1016/j.nicl.2018.02.002. eCollection 2018.
6
Quantitative susceptibility map analysis in preterm neonates with germinal matrix-intraventricular hemorrhage.
J Magn Reson Imaging. 2018 Nov;48(5):1199-1207. doi: 10.1002/jmri.26163. Epub 2018 May 10.
9
Structural and Maturational Covariance in Early Childhood Brain Development.
Cereb Cortex. 2017 Mar 1;27(3):1795-1807. doi: 10.1093/cercor/bhw022.

引用本文的文献

2
Preterm Birth Alters the Regional Development and Structural Covariance of Cerebellum at Term-Equivalent Age.
Cerebellum. 2024 Oct;23(5):1932-1941. doi: 10.1007/s12311-024-01691-0. Epub 2024 Apr 6.
3
MRI-based structural covariance network in early human brain development.
Front Neurosci. 2023 Nov 1;17:1302069. doi: 10.3389/fnins.2023.1302069. eCollection 2023.
4
Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates.
Eur Radiol. 2024 Jun;34(6):3601-3611. doi: 10.1007/s00330-023-10414-8. Epub 2023 Nov 14.
8
Behavioral Studies Using Large-Scale Brain Networks - Methods and Validations.
Front Hum Neurosci. 2022 Jun 16;16:875201. doi: 10.3389/fnhum.2022.875201. eCollection 2022.

本文引用的文献

1
Neonatal brain injury and aberrant connectivity.
Neuroimage. 2019 Jan 15;185:609-623. doi: 10.1016/j.neuroimage.2018.07.057. Epub 2018 Jul 27.
3
Structural Covariance Networks in Children with Autism or ADHD.
Cereb Cortex. 2017 Aug 1;27(8):4267-4276. doi: 10.1093/cercor/bhx135.
5
Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth.
Curr Biol. 2017 Jun 5;27(11):1561-1572.e8. doi: 10.1016/j.cub.2017.04.051. Epub 2017 May 25.
7
Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity.
Trends Cogn Sci. 2017 May;21(5):385-401. doi: 10.1016/j.tics.2017.03.003. Epub 2017 Apr 1.
8
Quantitative assessment of white matter injury in preterm neonates: Association with outcomes.
Neurology. 2017 Feb 14;88(7):614-622. doi: 10.1212/WNL.0000000000003606. Epub 2017 Jan 18.
9
NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns.
Neuroimage. 2016 Sep;138:28-42. doi: 10.1016/j.neuroimage.2016.05.034. Epub 2016 May 13.
10
Impact of lifestyle dimensions on brain pathology and cognition.
Neurobiol Aging. 2016 Apr;40:164-172. doi: 10.1016/j.neurobiolaging.2016.01.012. Epub 2016 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验