Suppr超能文献

使用大规模脑网络的行为研究——方法与验证

Behavioral Studies Using Large-Scale Brain Networks - Methods and Validations.

作者信息

Liu Mengting, Amey Rachel C, Backer Robert A, Simon Julia P, Forbes Chad E

机构信息

School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China.

Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States.

出版信息

Front Hum Neurosci. 2022 Jun 16;16:875201. doi: 10.3389/fnhum.2022.875201. eCollection 2022.

Abstract

Mapping human behaviors to brain activity has become a key focus in modern cognitive neuroscience. As methods such as functional MRI (fMRI) advance cognitive scientists show an increasing interest in investigating neural activity in terms of functional connectivity and brain networks, rather than activation in a single brain region. Due to the noisy nature of neural activity, determining how behaviors are associated with specific neural signals is not well-established. Previous research has suggested graph theory techniques as a solution. Graph theory provides an opportunity to interpret human behaviors in terms of the topological organization of brain network architecture. Graph theory-based approaches, however, only scratch the surface of what neural connections relate to human behavior. Recently, the development of data-driven methods, e.g., machine learning and deep learning approaches, provide a new perspective to study the relationship between brain networks and human behaviors across the whole brain, expanding upon past literatures. In this review, we sought to revisit these data-driven approaches to facilitate our understanding of neural mechanisms and build models of human behaviors. We start with the popular graph theory approach and then discuss other data-driven approaches such as connectome-based predictive modeling, multivariate pattern analysis, network dynamic modeling, and deep learning techniques that quantify meaningful networks and connectivity related to cognition and behaviors. Importantly, for each topic, we discuss the pros and cons of the methods in addition to providing examples using our own data for each technique to describe how these methods can be applied to real-world neuroimaging data.

摘要

将人类行为与大脑活动进行映射已成为现代认知神经科学的一个关键重点。随着功能磁共振成像(fMRI)等方法的发展,认知科学家对从功能连接性和脑网络的角度研究神经活动越来越感兴趣,而不仅仅是单个脑区的激活。由于神经活动具有噪声特性,确定行为如何与特定神经信号相关联尚未完全明确。先前的研究提出了图论技术作为一种解决方案。图论为从脑网络架构的拓扑组织角度解释人类行为提供了一个契机。然而,基于图论的方法只是触及了神经连接与人类行为关系的表面。最近,数据驱动方法的发展,例如机器学习和深度学习方法,为研究全脑范围内脑网络与人类行为之间的关系提供了一个新视角,拓展了以往的文献。在这篇综述中,我们试图重新审视这些数据驱动方法,以促进我们对神经机制的理解并构建人类行为模型。我们首先介绍流行的图论方法,然后讨论其他数据驱动方法,如基于连接组的预测建模、多变量模式分析、网络动态建模以及量化与认知和行为相关的有意义网络和连接性的深度学习技术。重要的是,对于每个主题,我们除了使用我们自己的数据为每种技术提供示例以描述这些方法如何应用于实际神经成像数据外,还讨论了这些方法的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/730d/9244405/17bc552ea62f/fnhum-16-875201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验