School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Brain Behav. 2020 Sep;10(9):e01747. doi: 10.1002/brb3.1747. Epub 2020 Jul 12.
Numerous treatments suggest that brain plasticity changes after peripheral nerve injury (PNI), and most studies examining functional magnetic resonance imaging focused on abnormal changes in specific brain regions. However, it is the large-scale interaction of neuronal networks instead of isolated brain regions contributed to the functional recovery after PNI. In the present study, we examined the intra- and internetworks alterations between the related functional resting-state networks (RSNs) in a sciatic nerve injury rat model.
Ninety-six female rats were divided into a control and model group. Unilateral sciatic nerve transection and direct anastomosis were performed in the latter group. We used an independent component analysis (ICA) algorithm to observe the changes in RSNs and assessed functional connectivity between different networks using the functional networks connectivity (FNC) toolbox.
Six RSNs related to PNI were identified, including the basal ganglia network (BGN), sensorimotor network (SMN), salience network (SN), interoceptive network (IN), cerebellar network (CN), and default mode network (DMN). The model group showed significant changes in whole-brain FC changes within these resting-state networks (RSNs), but four of these RSNs exhibited a conspicuous decrease. The interalterations performed that significantly decreased FNC existed between the BGN and SMN, BGN and IN, and BGN and DMN (p < .05, corrected). A significant increase in FNC existed between DMN and CN and between CN and SN (p < .05, corrected).
The results showed the large-scale functional reorganization at the network level after PNI. This evidence reveals new implications to the pathophysiological mechanisms in brain plasticity of PNI.
大量治疗方法表明,外周神经损伤 (PNI) 后大脑的可塑性会发生变化,大多数研究使用功能磁共振成像的研究都集中在特定脑区的异常变化上。然而,正是神经元网络的大规模相互作用而不是孤立的脑区对 PNI 后的功能恢复有贡献。在本研究中,我们在坐骨神经损伤大鼠模型中检查了相关功能静息态网络 (RSN) 之间的内网络和外网络变化。
96 只雌性大鼠被分为对照组和模型组。后者接受单侧坐骨神经横断和直接吻合。我们使用独立成分分析 (ICA) 算法观察 RSN 的变化,并使用功能网络连接 (FNC) 工具箱评估不同网络之间的功能连接。
确定了 6 个与 PNI 相关的 RSN,包括基底节网络 (BGN)、感觉运动网络 (SMN)、突显网络 (SN)、内脏感觉网络 (IN)、小脑网络 (CN) 和默认模式网络 (DMN)。模型组在这些静息态网络 (RSN) 内的全脑 FC 变化中表现出明显变化,但其中 4 个 RSN 明显减少。交互分析表明,BGN 和 SMN、BGN 和 IN 以及 BGN 和 DMN 之间的 FNC 显著降低(p<.05,校正)。DMN 和 CN 之间以及 CN 和 SN 之间的 FNC 显著增加(p<.05,校正)。
结果表明 PNI 后在网络水平上发生了大规模的功能重新组织。这一证据为 PNI 中大脑可塑性的病理生理机制提供了新的启示。