Suppr超能文献

FastMulRFS:在通用的基因复制和缺失模型下快速准确的物种树估计。

FastMulRFS: fast and accurate species tree estimation under generic gene duplication and loss models.

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Bioinformatics. 2020 Jul 1;36(Suppl_1):i57-i65. doi: 10.1093/bioinformatics/btaa444.

Abstract

MOTIVATION

Species tree estimation is a basic part of biological research but can be challenging because of gene duplication and loss (GDL), which results in genes that can appear more than once in a given genome. All common approaches in phylogenomic studies either reduce available data or are error-prone, and thus, scalable methods that do not discard data and have high accuracy on large heterogeneous datasets are needed.

RESULTS

We present FastMulRFS, a polynomial-time method for estimating species trees without knowledge of orthology. We prove that FastMulRFS is statistically consistent under a generic model of GDL when adversarial GDL does not occur. Our extensive simulation study shows that FastMulRFS matches the accuracy of MulRF (which tries to solve the same optimization problem) and has better accuracy than prior methods, including ASTRAL-multi (the only method to date that has been proven statistically consistent under GDL), while being much faster than both methods.

AVAILABILITY AND IMPEMENTATION

FastMulRFS is available on Github (https://github.com/ekmolloy/fastmulrfs).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

物种树估计是生物研究的基本部分,但由于基因复制和丢失(GDL),这会导致给定基因组中的基因出现多次,因此具有挑战性。系统发育基因组学研究中的所有常见方法要么减少可用数据,要么容易出错,因此需要不丢弃数据且在大型异构数据集上具有高精度的可扩展方法。

结果

我们提出了 FastMulRFS,这是一种在不知道同源性的情况下估计物种树的多项式时间方法。我们证明了在对抗性 GDL 不发生的情况下,FastMulRFS 在通用 GDL 模型下具有统计一致性。我们广泛的模拟研究表明,FastMulRFS 与 MulRF 的准确性相匹配(MulRF 试图解决相同的优化问题),并且比包括 ASTRAL-multi(迄今为止唯一在 GDL 下证明具有统计一致性的方法)在内的先前方法具有更高的准确性,同时比这两种方法都快得多。

可用性和实现

FastMulRFS 可在 Github(https://github.com/ekmolloy/fastmulrfs)上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb4/7355287/0cecf32a4f3d/btaa444f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验