Abrishami Shokooh Leila, Toffa Dènahin Hinnoutondji, Pouliot Philippe, Lesage Frédéric, Nguyen Dang Khoa
École Polytechnique de Montréal, Université de Montréal, C.P. 6079, succ. Centre-Ville, Montreal, H3C 3A7, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada.
Neurology Division, Centre Hospitalier de l'Université de Montréal (CHUM), 1000 Saint-Denis, Montreal, H2X 0C1, Canada.
Comput Biol Med. 2020 Jul;122:103858. doi: 10.1016/j.compbiomed.2020.103858. Epub 2020 Jun 15.
As a dynamical system, the brain constantly modulates its state and epileptic seizures have been hypothesized to be low dimensional periodic states of the brain. With this assumption, seizures have previously been investigated to identify patterns of these recurrent states; however, these attempts have generated conflicting results. These discrepant observations led us to reconsider the dynamic of state transitions during seizures.
Using intracerebral recordings of 17 refractory epilepsy patients assessed prior to surgery, we studied ictal states with several state-of-the-art methods in order to investigate their dynamics. Global states were identified based on distinct functional connectivity measures in the time domain, frequency domain, and phase-space. We further investigated the state transitions in different brain regions locally using a univariate measure based on dynamical system analysis named the Recurrence Plot (RP).
For the ictal period, we detected lower global state transition rates compared to pre- and post-ictal periods (p < 0.05 for seizure-free (SF) and p > 0.05 for non-seizure-free (NSF) groups post-surgery); however, the structure of RPs pointed towards higher state transition rates in some regions like the seizure-onset-zone (p < 0.001 for SF and p > 0.05 for NSF group). Moreover, a direct comparison of state transition dynamics between SF and NSF patients revealed different patterns for local state transitions between SF and NSF patients (p < 0.05 for seizure-onset-zone while p > 0.05 for other regions) and no significant difference in global state transition rates (p > 0.05).
Our findings pointed to distinct dynamics for state transitions at different spatial scales. While the pattern of global state transitions led to the conclusion that the brain changes state less frequently during ictal activity, locally, it experienced a higher rate of state transition. Furthermore, our results for different patterns of state transitions in the seizure-onset-zone between SF and NSF patients could have a practical application in predicting surgical outcome.
作为一个动态系统,大脑不断调节其状态,并且癫痫发作被假定为大脑的低维周期性状态。基于这一假设,此前已对癫痫发作进行研究以识别这些复发状态的模式;然而,这些尝试产生了相互矛盾的结果。这些不一致的观察结果促使我们重新考虑癫痫发作期间状态转换的动态过程。
利用17例难治性癫痫患者术前的脑内记录,我们采用几种先进方法研究发作期状态,以探究其动态过程。基于时域、频域和相空间中不同的功能连接测量来识别全局状态。我们还使用基于动态系统分析的单变量测量方法递归图(RP)在局部进一步研究不同脑区的状态转换。
对于发作期,我们检测到与发作前和发作后相比,全局状态转换率较低(术后无癫痫发作(SF)组p < 0.05,非无癫痫发作(NSF)组p > 0.05);然而,递归图的结构表明在某些区域如癫痫发作起始区状态转换率较高(SF组p < 0.001,NSF组p > 0.05)。此外,SF和NSF患者之间状态转换动态的直接比较显示,SF和NSF患者之间局部状态转换模式不同(癫痫发作起始区p < 0.05,其他区域p > 0.05),而全局状态转换率无显著差异(p > 0.05)。
我们的研究结果表明在不同空间尺度上状态转换具有不同的动态过程。虽然全局状态转换模式得出结论,即大脑在发作期活动期间状态变化频率较低,但在局部,它经历了更高的状态转换率。此外,我们关于SF和NSF患者在癫痫发作起始区不同状态转换模式的结果可能在预测手术结果方面具有实际应用价值。