Suppr超能文献

基于图像纹理分析的递归图特征量化方法研究

Research on Recurrence Plot Feature Quantization Method Based on Image Texture Analysis.

作者信息

Li Yan, Li Zhan

机构信息

School of Economics and Management, Dongguan University of Technology, Dongguan 523808, Guangdong, China.

School of Business, Huaihua University, Huaihua 418000, Hunan, China.

出版信息

J Environ Public Health. 2022 Aug 8;2022:2495024. doi: 10.1155/2022/2495024. eCollection 2022.

Abstract

The nonlinear time-series analysis method, based on the recurrence plot theory, has received great attention from researchers and has been successfully used in multiple fields. However, traditional recurrence plots that use Heaviside step functions to determine the recursive behavior of a point in the phase space have two problems: (1) Heaviside step functions produce a rigid boundary, resulting in information loss; and (2) the selection of the critical distance, , is crucial; if the selection is inappropriate, it will result in a low-dimensional dynamics error, and as of now, there exists no unified method for selecting this parameter. With regard to the problems described above, the novelty of this article lies in the following: (1) when determining the state-phase point recursiveness, a Gaussian function is used to replace the Heaviside function, thereby solving the rigidity and binary value problems of the recursive analysis results caused by the Heaviside step function; and (2) texture analysis is performed on a recurrence plot, new ways of studying complex system dynamics features are proposed, and a system of complex system dynamic-like measurement methods is built.

摘要

基于递归图理论的非线性时间序列分析方法受到了研究人员的广泛关注,并已成功应用于多个领域。然而,传统的递归图使用海维赛德阶跃函数来确定相空间中一个点的递归行为,存在两个问题:(1)海维赛德阶跃函数产生一个刚性边界,导致信息丢失;(2)临界距离的选择至关重要;如果选择不当,将导致低维动力学误差,并且截至目前,不存在选择该参数的统一方法。针对上述问题,本文的新颖之处在于:(1)在确定状态相点递归性时,使用高斯函数代替海维赛德函数,从而解决了海维赛德阶跃函数导致的递归分析结果的刚性和二值问题;(2)对递归图进行纹理分析,提出了研究复杂系统动力学特征的新方法,并构建了一个复杂系统类动力学测量方法体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f13/9377861/caf742b2e595/JEPH2022-2495024.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验