Department of Plant Sciences, University of California, Davis, California, United States of America.
Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia.
PLoS Genet. 2020 Jul 13;16(7):e1008812. doi: 10.1371/journal.pgen.1008812. eCollection 2020 Jul.
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
在拟南芥中,CONSTANS(CO)整合光和昼夜节律信号,以促进长日(LD)下的开花。在禾本科植物中,一个重复产生了两个命名为 CONSTANS1(CO1)和 CONSTANS2(CO2)的同源物。在这里,我们表明,在 LD 下生长的四倍体小麦植物中,A 和 B 基因组 CO1 和 CO2 的同源基因(co1 co2)的功能丧失突变的组合导致开花时间的小(3 d)但显著(P<0.0001)提前,无论是在 PHOTOPERIOD1(PPD1)敏感(Ppd-A1b,功能祖先等位基因)还是不敏感(Ppd-A1a,功能显性等位基因)背景下。在短日(SD)下,co1 co2 突变体在 Ppd-A1a 存在下比野生型早 13 d 抽穗(P<0.0001)。然而,在 Ppd-A1b 存在下,两种基因型的穗都无法在 180 d 时出现。这些结果表明,CO1 和 CO2 主要作为 LD 和 SD 中弱开花时间抑制剂发挥作用。相比之下,在 PPD1 同源物的两个基因都丧失功能的 ppd1 突变体中,野生型 Co1 等位基因在 LD 下相对于 co1 突变体等位基因加速开花时间>60 d。我们检测到 CO1、CO2 和 PPD1 基因在开花时间上的显著遗传相互作用,这反映在转录和蛋白质水平的复杂相互作用中。PPD1 的功能丧失突变比 co1 co2 突变体的组合延迟开花更多,更重要的是,在缺乏功能性 CO1 和 CO2 基因的情况下,PPD1 能够感知和响应光周期的差异。同样,CO1 能够在缺乏功能性 PPD1 的情况下响应 LD 加速开花时间。综上所述,这些结果表明,PPD1 和 CO1 能够在彼此不存在的情况下对光周期做出反应,并且这两个光周期途径在转录和蛋白质水平上的相互作用对于精细调节小麦的开花反应很重要。