Suppr超能文献

预测年度污染物浓度和暴露量的差异改善,以进行监管政策评估。

Predicting differential improvements in annual pollutant concentrations and exposures for regulatory policy assessment.

机构信息

Enviroinmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.

Center for Health Policy Research, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Environ Int. 2020 Oct;143:105942. doi: 10.1016/j.envint.2020.105942. Epub 2020 Jul 10.

Abstract

Over the past decade, researchers and policy-makers have become increasingly interested in regulatory and policy interventions to reduce air pollution concentrations and improve human health. Studies have typically relied on relatively sparse environmental monitoring data that lack the spatial resolution to assess small-area improvements in air quality and health. Few studies have integrated multiple types of measures of an air pollutant into one single modeling framework that combines spatially- and temporally-rich monitoring data. In this paper, we investigated the differential effects of California emissions reduction plan on reducing air pollution between those living in the goods movement corridors (GMC) that are within 500 m of major highways that serve as truck routes to those farther away or adjacent to routes that prohibit trucks. A mixed effects Deletion/Substitution/Addition (D/S/A) machine learning algorithm was developed to model annual pollutant concentrations of nitrogen dioxide (NO) by taking repeated measures into consideration and by integrating multiple types of NO measurements, including those through government regulatory and research-oriented saturation monitoring into a single modeling framework. Difference-in-difference analysis was conducted to identify whether those living in GMC demonstrated statistically larger reductions in air pollution exposure. The mixed effects D/S/A machine learning modeling result indicated that GMC had 2 ppb greater reductions in NO concentrations from pre- to post-policy period than far away areas. The difference-in-difference analysis demonstrated that the subjects living in GMC experienced statistically significant greater reductions in NO exposure than those living in the far away areas. This study contributes to scientific knowledge by providing empirical evidence that improvements in air quality via the emissions reductions plan policies impacted traffic-related air pollutant concentrations and associated exposures most among low-income Californians with chronic conditions living in GMC. The identified differences in pollutant reductions across different location domains may be applicable to other states or other countries if similar policies are enacted.

摘要

在过去的十年中,研究人员和政策制定者越来越关注监管和政策干预措施,以降低空气污染浓度并改善人类健康。研究通常依赖于相对稀疏的环境监测数据,这些数据缺乏评估空气质量和健康小面积改善的空间分辨率。很少有研究将一种污染物的多种测量方法整合到一个单一的建模框架中,该框架结合了空间和时间丰富的监测数据。在本文中,我们研究了加利福尼亚州减排计划对减少货物运输走廊(GMC)内空气污染的差异影响,这些 GMC 距离主要高速公路 500 米以内,这些高速公路是卡车运输路线,而那些距离较远或毗邻禁止卡车的路线。开发了一种混合效应删除/替代/添加(D/S/A)机器学习算法,通过考虑重复测量并整合多种类型的 NO 测量值,包括通过政府监管和面向研究的饱和监测来整合多种类型的 NO 测量值,从而对氮氧化物(NO)的年度污染物浓度进行建模。差异分析用于确定居住在 GMC 的人是否在空气污染暴露方面表现出统计学上更大的降低。混合效应 D/S/A 机器学习建模结果表明,与远距离区域相比,GMC 在政策前到政策后的时间段内,NO 浓度降低了 2 个 ppb。差异分析表明,居住在 GMC 的受试者在 NO 暴露方面经历了统计学上显著更大的降低,而居住在远距离区域的受试者则没有。本研究通过提供经验证据,为科学知识做出了贡献,即通过减排计划政策改善空气质量对交通相关空气污染物浓度及其相关暴露的影响最大,尤其是在加利福尼亚州患有慢性疾病的低收入人群中,他们居住在 GMC。不同位置域之间的污染物减少差异可能适用于其他州或其他国家,如果实施类似的政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验