Suppr超能文献

通过高分辨率绘图来研究弱势社区的空气污染暴露动态。

Examining air pollution exposure dynamics in disadvantaged communities through high-resolution mapping.

机构信息

School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.

Propeller Health, 505 Montgomery St. #2300, San Francisco, CA 94111, USA.

出版信息

Sci Adv. 2024 Aug 9;10(32):eadm9986. doi: 10.1126/sciadv.adm9986. Epub 2024 Aug 7.

Abstract

This study bridges gaps in air pollution research by examining exposure dynamics in disadvantaged communities. Using cutting-edge machine learning and massive data processing, we produced high-resolution (100 meters) daily air pollution maps for nitrogen dioxide (NO), fine particulate matter (PM), and ozone (O) across California for 2012-2019. Our findings revealed opposite spatial patterns of NO and PM to that of O. We also identified consistent, higher pollutant exposure for disadvantaged communities from 2012 to 2019, although the most disadvantaged communities saw the largest NO and PM reductions and the advantaged neighborhoods experienced greatest rising O concentrations. Further, day-to-day exposure variations decreased for NO and O. The disparity in NO exposure decreased, while it persisted for O. In addition, PM showed increased day-to-day variations across all communities due to the increase in wildfire frequency and intensity, particularly affecting advantaged suburban and rural communities.

摘要

本研究通过考察弱势社区的暴露动态,弥合了空气污染研究中的差距。我们使用先进的机器学习和大规模数据处理技术,为 2012 年至 2019 年期间加利福尼亚州的二氧化氮(NO)、细颗粒物(PM)和臭氧(O)生成了高分辨率(100 米)的每日空气污染图。我们的研究结果揭示了 NO 和 PM 的空间分布模式与 O 的相反。我们还发现,弱势社区的污染物暴露在 2012 年至 2019 年期间一直保持一致,尽管最弱势的社区的 NO 和 PM 减少幅度最大,而优势社区的 O 浓度则上升最大。此外,NO 和 O 的每日暴露变化减少。NO 暴露的差距在缩小,而 O 的差距仍在持续。此外,由于野火频率和强度的增加,PM 在所有社区的日变化都有所增加,这尤其影响到优势郊区和农村社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa4c/11305374/81e6f07f0e3e/sciadv.adm9986-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验