Suppr超能文献

基于光学相干断层扫描技术的青光眼诊断深度学习系统的开发与验证

Development and Validation of a Deep Learning System for Diagnosing Glaucoma Using Optical Coherence Tomography.

作者信息

Kim Ko Eun, Kim Joon Mo, Song Ji Eun, Kee Changwon, Han Jong Chul, Hyun Seung Hyup

机构信息

Department of Ophthalmology, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Korea.

Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea.

出版信息

J Clin Med. 2020 Jul 9;9(7):2167. doi: 10.3390/jcm9072167.

Abstract

This study aimed to develop and validate a deep learning system for diagnosing glaucoma using optical coherence tomography (OCT). A training set of 1822 eyes (332 control, 1490 glaucoma) with 7288 OCT images, an internal validation set of 425 eyes (104 control, 321 glaucoma) with 1700 images, and an external validation set of 355 eyes (108 control, 247 glaucoma) with 1420 images were included. Deviation and thickness maps of retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) analyses were used to develop the deep learning system for glaucoma diagnosis based on the visual geometry group deep convolutional neural network (VGG-19) model. The diagnostic abilities of deep learning models using different OCT maps were evaluated, and the best model was compared with the diagnostic results produced by two glaucoma specialists. The glaucoma-diagnostic ability was highest when the deep learning system used the RNFL thickness map alone (area under the receiver operating characteristic curve (AUROC) 0.987), followed by the RNFL deviation map (AUROC 0.974), the GCIPL thickness map (AUROC 0.966), and the GCIPL deviation map (AUROC 0.903). Among combination sets, use of the RNFL and GCIPL deviation map showed the highest diagnostic ability, showing similar results when tested via an external validation dataset. The inclusion of the axial length did not significantly affect the diagnostic performance of the deep learning system. The location of glaucomatous damage showed generally high level of agreement between the heatmap and the diagnosis of glaucoma specialists, with 90.0% agreement when using the RNFL thickness map and 88.0% when using the GCIPL thickness map. In conclusion, our deep learning system showed high glaucoma-diagnostic abilities using OCT thickness and deviation maps. It also showed detection patterns similar to those of glaucoma specialists, showing promising results for future clinical application as an interpretable computer-aided diagnosis.

摘要

本研究旨在开发并验证一种使用光学相干断层扫描(OCT)诊断青光眼的深度学习系统。纳入了一个包含1822只眼(332只对照眼、1490只青光眼眼)及7288张OCT图像的训练集、一个包含425只眼(104只对照眼、321只青光眼眼)及1700张图像的内部验证集,以及一个包含355只眼(108只对照眼、247只青光眼眼)及1420张图像的外部验证集。基于视觉几何组深度卷积神经网络(VGG - 19)模型,利用视网膜神经纤维层(RNFL)和神经节细胞 - 内丛状层(GCIPL)分析的偏差图和厚度图来开发用于青光眼诊断的深度学习系统。评估了使用不同OCT图的深度学习模型的诊断能力,并将最佳模型与两名青光眼专家的诊断结果进行比较。当深度学习系统单独使用RNFL厚度图时,青光眼诊断能力最高(受试者操作特征曲线下面积(AUROC)为0.987),其次是RNFL偏差图(AUROC为0.974)、GCIPL厚度图(AUROC为0.966)和GCIPL偏差图(AUROC为0.903)。在组合集中,使用RNFL和GCIPL偏差图显示出最高的诊断能力,通过外部验证数据集测试时结果相似。纳入眼轴长度并未显著影响深度学习系统的诊断性能。青光眼损伤的位置在热图与青光眼专家的诊断之间总体上显示出较高的一致性,使用RNFL厚度图时一致性为90.0%,使用GCIPL厚度图时为88.0%。总之,我们的深度学习系统使用OCT厚度图和偏差图显示出较高的青光眼诊断能力。它还显示出与青光眼专家相似的检测模式,作为一种可解释的计算机辅助诊断方法,在未来临床应用中显示出有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09dc/7408821/f8d72a49a730/jcm-09-02167-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验