Suppr超能文献

深度学习与光学相干断层扫描技术在青光眼诊断中的应用:弥合结构成像诊断差距

Deep learning and optical coherence tomography in glaucoma: Bridging the diagnostic gap on structural imaging.

作者信息

Thompson Atalie C, Falconi Aurelio, Sappington Rebecca M

机构信息

Department of Surgical Ophthalmology, Wake Forest School of Medicine, Winston Salem, NC, United States.

Department of Internal Medicine, Gerontology, and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.

出版信息

Front Ophthalmol (Lausanne). 2022 Sep 21;2:937205. doi: 10.3389/fopht.2022.937205. eCollection 2022.

Abstract

Glaucoma is a leading cause of progressive blindness and visual impairment worldwide. Microstructural evidence of glaucomatous damage to the optic nerve head and associated tissues can be visualized using optical coherence tomography (OCT). In recent years, development of novel deep learning (DL) algorithms has led to innovative advances and improvements in automated detection of glaucomatous damage and progression on OCT imaging. DL algorithms have also been trained utilizing OCT data to improve detection of glaucomatous damage on fundus photography, thus improving the potential utility of color photos which can be more easily collected in a wider range of clinical and screening settings. This review highlights ten years of contributions to glaucoma detection through advances in deep learning models trained utilizing OCT structural data and posits future directions for translation of these discoveries into the field of aging and the basic sciences.

摘要

青光眼是全球范围内导致进行性失明和视力损害的主要原因。使用光学相干断层扫描(OCT)可以可视化视神经乳头和相关组织的青光眼性损伤的微观结构证据。近年来,新型深度学习(DL)算法的发展在OCT成像上自动检测青光眼性损伤和病情进展方面带来了创新性进展和改进。DL算法也利用OCT数据进行训练,以提高眼底摄影中青光眼性损伤的检测能力,从而提高彩色照片的潜在实用性,因为彩色照片在更广泛的临床和筛查环境中更容易收集。本综述重点介绍了通过利用OCT结构数据训练的深度学习模型在青光眼检测方面十年的贡献,并提出了将这些发现转化到衰老领域和基础科学领域的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7598/11182271/d32ace6bba74/fopht-02-937205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验