Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA.
Department of Medicine, Harvard Medical School, Boston, MA, USA.
J Thromb Haemost. 2020 Oct;18(10):2701-2711. doi: 10.1111/jth.15012. Epub 2020 Aug 23.
The mechanisms that regulate platelet biogenesis remain unclear; factors that trigger megakaryocytes (MKs) to initiate platelet production are poorly understood. Platelet formation begins with proplatelets, which are cellular extensions originating from the MK cell body.
Proplatelet formation is an asynchronous and dynamic process that poses unique challenges for researchers to accurately capture and analyze. We have designed an open-source, high-content, high-throughput, label-free analysis platform.
Phase-contrast images of live, primary MKs are captured over a 24-hour period. Pixel-based machine-learning classification done by ilastik generates probability maps of key cellular features (circular MKs and branching proplatelets), which are processed by a customized CellProfiler pipeline to identify and filter structures of interest based on morphology. A subsequent reinforcement classification, by CellProfiler Analyst, improves the detection of cellular structures.
This workflow yields the percent of proplatelet production, area, count of proplatelets and MKs, and other statistics including skeletonization information for measuring proplatelet branching and length. We propose using a combination of these analyzed metrics, in particular the area measurements of MKs and proplatelets, when assessing in vitro proplatelet production. Accuracy was validated against manually counted images and an existing algorithm. We then used the new platform to test compounds known to cause thrombocytopenia, including bromodomain inhibitors, and uncovered previously unrecognized effects of drugs on proplatelet formation, thus demonstrating the utility of our analysis platform.
This advance in creating unbiased data analysis will increase the scale and scope of proplatelet production studies and potentially serve as a valuable resource for investigating molecular mechanisms of thrombocytopenia.
调节血小板生成的机制仍不清楚;触发巨核细胞(MK)启动血小板生成的因素知之甚少。血小板的形成始于原血小板,原血小板是起源于 MK 细胞体的细胞延伸。
原血小板的形成是一个异步和动态的过程,这给研究人员准确捕捉和分析带来了独特的挑战。我们设计了一个开源的、高通量的、无标记的高内涵分析平台。
对活的原代 MK 进行 24 小时的相差成像。ilastik 的基于像素的机器学习分类生成关键细胞特征(圆形 MK 和分支原血小板)的概率图,这些概率图由定制的 CellProfiler 管道进行处理,根据形态识别和过滤感兴趣的结构。随后,CellProfiler Analyst 进行强化分类,以提高对细胞结构的检测。
该工作流程可提供原血小板生成的百分比、面积、原血小板和 MK 的数量以及其他统计信息,包括用于测量原血小板分支和长度的骨架化信息。我们建议在评估体外原血小板生成时,结合使用这些分析指标,特别是 MK 和原血小板的面积测量值。我们还验证了该方法的准确性,与手动计数的图像和现有的算法进行了比较。然后,我们使用新平台测试了已知导致血小板减少的化合物,包括溴结构域抑制剂,并发现了药物对原血小板形成的先前未被识别的影响,从而证明了我们分析平台的实用性。
创建无偏数据分析的这一进展将增加原血小板生成研究的规模和范围,并可能成为研究血小板减少症分子机制的有价值资源。