Suppr超能文献

基于机器学习的人成纤维细胞复制性衰老的形态定量分析。

Machine learning-based morphological quantification of replicative senescence in human fibroblasts.

机构信息

Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.

Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA.

出版信息

Geroscience. 2024 Apr;46(2):2425-2439. doi: 10.1007/s11357-023-01007-w. Epub 2023 Nov 21.

Abstract

Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.

摘要

尽管衰老在机体和细胞水平上已经得到了广泛的研究,但个体细胞在复制寿命过程中所经历的形态变化尚未被精确地量化。在这里,我们提出了一个易于访问的基于机器学习的管道的结果,该管道使用标准荧光显微镜和开放访问软件来量化人类成纤维细胞在培养过程中的复制寿命过程中经历的微小形态变化。在广泛使用的成纤维细胞系(IMR-90)中应用该管道,我们发现,先进的复制年龄显著增加(+28-79%)细胞表面积、周长、伪足数量和总长度,以及核表面积,同时降低细胞的圆形度,这些表型变化主要发生在达到复制衰老时。这些与衰老相关的形态变化在来自不同祖先、年龄和性别组的人类供体的原代真皮成纤维细胞中得到了重现,尽管程度不同。通过对单细胞形态进行综合分析,我们的管道进一步对衰老样细胞进行分类,并量化了它们在 IMR-90 细胞和所有测试供体的真皮成纤维细胞中随复制衰老而增加的数量。这些发现为复制衰老提供了定量的见解,同时展示了易于访问的计算管道在衰老研究中的高通量细胞表型分析中的适用性。

相似文献

9
The weakness of senescent dermal fibroblasts.衰老的皮肤成纤维细胞的脆弱性。
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301880120. doi: 10.1073/pnas.2301880120. Epub 2023 Aug 14.

本文引用的文献

1
The weakness of senescent dermal fibroblasts.衰老的皮肤成纤维细胞的脆弱性。
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301880120. doi: 10.1073/pnas.2301880120. Epub 2023 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验