Suppr超能文献

与鼻病相关的临床类型的鉴别。

Differentiation of Clinical Patterns Associated With Rhinologic Disease.

机构信息

Department of Otolaryngology-Head and Neck Surgery, Tulane University, New Orleans, Louisiana.

Department of Otolaryngology, Walter Reed National Military Medical Center, Bethesda, Maryland.

出版信息

Am J Rhinol Allergy. 2021 Mar;35(2):179-186. doi: 10.1177/1945892420941706. Epub 2020 Jul 14.

Abstract

BACKGROUND

Common rhinologic diagnoses have similar presentations with a varying degree of overlap. Patterns may exist within clinical data that can be useful for early diagnosis and predicting outcomes.

OBJECTIVE

To explore the feasibility of artificial intelligence to differentiate patterns in patient data in order to develop clinically-meaningful diagnostic groups.

METHODS

A cross-sectional study of prospectively-acquired patient data at a tertiary rhinology clinic was performed. Data extracted included objective findings on nasal endoscopy, patient reported quality of life (PRQOL) instrument ratings, peripheral eosinophil fraction, and past medical history. Unsupervised non-hierarchical cluster analysis was performed to discover patterns in the data using 22 input variables.

RESULTS

A total of 545 patients were analyzed after application of inclusion and exclusion criteria yielding 7 unique patient clusters, highly dependent on PRQOL scores and demographics. The clusters were clinically-relevant with distinct characteristics. Chronic rhinosinusitis without nasal polyposis (CRSsNP) was associated with two clusters having low frequencies of asthma and low eosinophil fractions. Chronic rhinosinusitis with nasal polyposis (CRSwNP) was associated with high frequency of asthma, mean (standard deviation [SD]) NOSE scores of 66 (19) and SNOT-22 scores of 41 (15), and high eosinophil fractions. AR was present in multiple clusters. RARS was associated with the youngest population with mean (SD) NOSE score of 54 (23) and SNOT-22 score of 41 (19).

CONCLUSION

Broader consideration of initially available clinical data may improve diagnostic efficiency for rhinologic conditions without ancillary studies, using computer-driven algorithms. PRQOL scores and demographic information appeared to be useful adjuncts, with associations to diagnoses in this pilot study.

摘要

背景

常见的鼻科诊断具有相似的表现,且具有不同程度的重叠。临床数据中可能存在模式,这些模式对于早期诊断和预测结果可能有用。

目的

探索人工智能区分患者数据模式的可行性,以便开发具有临床意义的诊断组。

方法

对一家三级鼻科诊所前瞻性采集的患者数据进行了横断面研究。提取的数据包括鼻内镜的客观检查结果、患者报告的生活质量(PRQOL)量表评分、外周嗜酸性粒细胞分数和既往病史。使用 22 个输入变量进行无监督非层次聚类分析,以发现数据中的模式。

结果

应用纳入和排除标准后,共分析了 545 例患者,得出 7 个独特的患者聚类,高度依赖于 PRQOL 评分和人口统计学特征。这些聚类具有明显的临床特征,具有明显的特征。非鼻息肉性慢性鼻-鼻窦炎(CRSsNP)与两个聚类相关,这两个聚类哮喘和嗜酸性粒细胞分数的频率较低。鼻息肉性慢性鼻-鼻窦炎(CRSwNP)与哮喘频率高、NOSE 评分平均(标准差[SD])为 66(19)和 SNOT-22 评分 41(15)以及嗜酸性粒细胞分数高相关。AR 存在于多个聚类中。RARS 与最年轻的人群相关,平均(SD)NOSE 评分 54(23)和 SNOT-22 评分 41(19)。

结论

使用计算机驱动的算法,更广泛地考虑最初可用的临床数据可能会提高鼻科疾病的诊断效率,而无需辅助研究。在本试点研究中,PRQOL 评分和人口统计学信息似乎是有用的辅助手段,与诊断相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验