Suppr超能文献

鼻科学人工智能研究的范围综述。

A Scoping Review of Artificial Intelligence Research in Rhinology.

机构信息

Rhinology and Skull Base Research Group, Applied Medical Research Centre, University of New South Wales, Sydney, Australia.

School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.

出版信息

Am J Rhinol Allergy. 2023 Jul;37(4):438-448. doi: 10.1177/19458924231162437. Epub 2023 Mar 9.

Abstract

BACKGROUND

A considerable volume of possible applications of artificial intelligence (AI) in the field of rhinology exists, and research in the area is rapidly evolving.

OBJECTIVE

This scoping review aims to provide a brief overview of all current literature on AI in the field of rhinology. Further, it aims to highlight gaps in the literature for future rhinology researchers.

METHODS

OVID MEDLINE (1946-2022) and EMBASE (1974-2022) were searched from January 1, 2017 until May 14, 2022 to identify all relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews checklist was used to guide the review.

RESULTS

A total of 2420 results were identified of which 62 met the eligibility criteria. A further 17 articles were included through bibliography searching, for a total of 79 articles on AI in rhinology. Each year resulted in an increase in the number of publications, from 3 articles published in 2017 to 31 articles published in 2021. Articles were produced by authors from 22 countries with a relative majority coming from the USA (19%), China (19%), and South Korea (13%). Articles were placed into 1 of 5 categories: phenotyping/endotyping (n = 12), radiological diagnostics (n = 42), prognostication (n = 10), non-radiological diagnostics (n = 7), surgical assessment/planning (n = 8). Diagnostic or prognostic utility of the AI algorithms were rated as excellent (n = 29), very good (n = 25), good (n = 7), sufficient (n = 1), bad (n = 2), or was not reported/not applicable (n = 15).

CONCLUSIONS

AI is experiencing an increasingly significant role in rhinology research. Articles are showing high rates of diagnostic accuracy and are being published at an almost exponential rate around the world. Utilizing AI in radiological diagnosis was the most published topic of research, however, AI in rhinology is still in its infancy and there are several topics yet to be thoroughly explored.

摘要

背景

人工智能(AI)在鼻科学领域有大量潜在应用,该领域的研究正在迅速发展。

目的

本范围综述旨在概述鼻科学领域中所有关于 AI 的现有文献。此外,它旨在为未来的鼻科学研究人员突出文献中的空白。

方法

从 2017 年 1 月 1 日至 2022 年 5 月 14 日,通过 OVID MEDLINE(1946-2022 年)和 EMBASE(1974-2022 年)检索了所有相关文章。使用系统评价和荟萃分析扩展的首选报告项目扩展清单来指导审查。

结果

共确定了 2420 项结果,其中 62 项符合入选标准。通过参考文献搜索又纳入了 17 篇文章,总共纳入了 79 篇关于鼻科学 AI 的文章。每年发表的文章数量都有所增加,从 2017 年发表的 3 篇增加到 2021 年发表的 31 篇。文章的作者来自 22 个国家,其中相对多数来自美国(19%)、中国(19%)和韩国(13%)。文章分为 5 类之一:表型/终末型(n=12)、放射学诊断(n=42)、预后(n=10)、非放射学诊断(n=7)、手术评估/规划(n=8)。AI 算法的诊断或预后效用被评为优秀(n=29)、非常好(n=25)、好(n=7)、足够(n=1)、差(n=2)或未报告/不适用(n=15)。

结论

AI 在鼻科学研究中扮演着越来越重要的角色。文章显示出较高的诊断准确性,并且在全球范围内以近乎指数级的速度发表。在放射学诊断中使用 AI 是研究最多的主题,但鼻科学中的 AI 仍处于起步阶段,还有几个主题有待深入探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/956d/10273866/a46d156dc9d2/10.1177_19458924231162437-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验