Suppr超能文献

Cerebral circulation and oxygen metabolism in moyamoya disease of ischemic type in children.

作者信息

Taki W, Yonekawa Y, Kobayashi A, Ishikawa M, Kikuchi H, Nishizawa S, Senda M, Yonekawa Y, Fukuyama H, Harada K

机构信息

Department of Neurosurgery, National Cardiovascular Center, Osaka, Japan.

出版信息

Childs Nerv Syst. 1988 Oct;4(5):259-62. doi: 10.1007/BF00271919.

Abstract

Cerebral rCBF, rOEF, rCMRO2, and rCBV in moyamoya disease were studied by means of positron emmission tomography (PET), using 15O as a tracer. Steady-state methods with C15O2 and 15O2 were used to obtain the functional images of rCBF, rCMRO2, and rOEF. The 15O single-inhalation method was used to obtain the rCBV image. Five children (two boys and three girls) with mean age of 11 years and eight normal volunteers with mean age of 31 years were included in the study. The symptoms of moyamoya disease were due to cerebral ischemia, such as transient ischemic attack (TIA), reversible ischemic neurological deficit (RIND), and minor stroke. The interval between the latest ictus and PET scan ranged from 3 days to 3 years 6 months. Physiological parameters (rCBF, rCMRO2 etc.) in cerebral gray matter, cerebral white matter and basal ganglia were calculated from the single functional images. Any, low density areas appearing in X-ray-CT performed just prior to the PET study were carefully excluded from the analysis. The parameters of moyamoya disease were statistically compared with normal control parameters. Though the value of rCBF was slightly higher in moyamoya disease, this difference was not statistically significant. On the other hand, in moyamoya disease rCBV increased significantly in gray matter, white matter, and basal ganglia. The ratio of CBF to CBV is considered to be the index of perfusion pressure and reciprocal of cerebral mean transit time under the normal autoregulation of CBF. This ratio was calculated and compared with the normal value for each tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验