Suppr超能文献

胃癌术后人工神经网络预后模型的建立和验证:一项国际多中心队列研究。

Development and validation of an artificial neural network prognostic model after gastrectomy for gastric carcinoma: An international multicenter cohort study.

机构信息

Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.

出版信息

Cancer Med. 2020 Sep;9(17):6205-6215. doi: 10.1002/cam4.3245. Epub 2020 Jul 15.

Abstract

BACKGROUND

Recently, artificial neural network (ANN) methods have also been adopted to deal with the complex multidimensional nonlinear relationship between clinicopathologic variables and survival for patients with gastric cancer. Using a multinational cohort, this study aimed to develop and validate an ANN-based survival prediction model for patients with gastric cancer.

METHODS

Patients with gastric cancer who underwent gastrectomy in a Chinese center, a Japanese center, and recorded in the Surveillance, Epidemiology, and End Results database, respectively, were included in this study. Multilayer perceptron neural network was used to develop the prediction model. Time-dependent receiver operating characteristic (ROC) curves, area under the curves (AUCs), and decision curve analysis (DCA) were used to compare the ANN model with previous prediction models.

RESULTS

An ANN model with nine input nodes, nine hidden nodes, and two output nodes was constructed. These three cohort's data showed that the AUC of the model was 0.795, 0.836, and 0.850 for 5-year survival prediction, respectively. In the calibration curve analysis, the ANN-predicted survival had a high consistency with the actual survival. Comparison of the DCA and time-dependent ROC between the ANN model and previous prediction models showed that the ANN model had good and stable prediction capability compared to the previous models in all cohorts.

CONCLUSIONS

The ANN model has significantly better discriminative capability and allows an individualized survival prediction. This model has good versatility in Eastern and Western data and has high clinical application value.

摘要

背景

最近,人工神经网络(ANN)方法也被用于处理胃癌患者临床病理变量与生存之间复杂的多维非线性关系。本研究采用多中心队列,旨在开发和验证一种基于 ANN 的胃癌患者生存预测模型。

方法

本研究纳入了分别在中国中心、日本中心和 Surveillance, Epidemiology, and End Results 数据库接受胃切除术的胃癌患者。使用多层感知器神经网络来开发预测模型。时间依赖性接收者操作特征(ROC)曲线、曲线下面积(AUC)和决策曲线分析(DCA)用于比较 ANN 模型与以前的预测模型。

结果

构建了一个具有九个输入节点、九个隐藏节点和两个输出节点的 ANN 模型。这三个队列的数据显示,该模型对 5 年生存率的 AUC 分别为 0.795、0.836 和 0.850。在校准曲线分析中,ANN 预测的生存率与实际生存率具有高度一致性。ANN 模型与以前的预测模型之间 DCA 和时间依赖性 ROC 的比较表明,与以前的模型相比,ANN 模型在所有队列中均具有较好且稳定的预测能力。

结论

ANN 模型具有显著更好的判别能力,并允许进行个体化生存预测。该模型在东西方数据中具有良好的通用性,具有较高的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff27/7476835/c6966eb779df/CAM4-9-6205-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验