Suppr超能文献

从流式显微镜图像中提取和表征容器界面处抗体聚集的“指纹”的机器学习和统计分析。

Machine learning and statistical analyses for extracting and characterizing "fingerprints" of antibody aggregation at container interfaces from flow microscopy images.

机构信息

Department of Chemical and Biological Engineering, Center for Pharmaceutical Biotechnology, University of Colorado Boulder, Boulder, Colorado.

Ursa Analytics, Denver, Colorado.

出版信息

Biotechnol Bioeng. 2020 Nov;117(11):3322-3335. doi: 10.1002/bit.27501. Epub 2020 Jul 28.

Abstract

Therapeutic proteins are exposed to numerous stresses during their manufacture, shipping, storage and administration to patients, causing them to aggregate and form particles through a variety of different mechanisms. These varied mechanisms generate particle populations with characteristic morphologies, creating "fingerprints" that are reflected in images recorded using flow imaging microscopy. Particle population fingerprints in test samples can be extracted and compared against those of particles produced under baseline conditions using an algorithm that combines machine learning tools such as convolutional neural networks with statistical tools such as nonparametric density estimation and Rosenblatt transform-based goodness-of-fit hypothesis testing. This analysis provides a quantitative method with user-specified type 1 error rates to determine whether the mechanisms that produce particles in test samples differ from particle formation mechanisms operative under baseline conditions. As a demonstration, this algorithm was used to compare particles within intravenous immunoglobulin formulations that were exposed to freeze-thawing and shaking stresses within a variety of different containers. This analysis revealed that seemingly subtle differences in containers (e.g., glass vials from different manufacturers) generated distinguishable particle populations after the stresses were applied. This algorithm can be used to assess the impact of process and formulation changes on aggregation-related product instabilities.

摘要

治疗性蛋白在制造、运输、储存和给患者施用的过程中会受到多种应激,导致它们通过各种不同的机制聚集并形成颗粒。这些不同的机制产生具有特征形态的颗粒群体,形成“指纹”,这些指纹反映在使用流动成像显微镜记录的图像中。可以从测试样品中提取颗粒群体指纹,并使用一种算法将其与在基线条件下产生的颗粒进行比较,该算法结合了机器学习工具(如卷积神经网络)和统计工具(如非参数密度估计和基于 Rosenblatt 变换的拟合优度假设检验)。这种分析提供了一种具有用户指定的第一类错误率的定量方法,以确定在测试样品中产生颗粒的机制是否与基线条件下起作用的颗粒形成机制不同。作为一个演示,该算法用于比较在各种不同容器中经历冷冻-解冻和摇晃应激的静脉内免疫球蛋白制剂中的颗粒。该分析表明,在施加应激后,容器(例如,来自不同制造商的玻璃小瓶)之间看似微小的差异会产生可区分的颗粒群体。该算法可用于评估工艺和配方变化对聚集相关产品不稳定性的影响。

相似文献

引用本文的文献

本文引用的文献

1
Shocking Data on Parcel Shipments of Protein Solutions.蛋白质溶液包裹运输的惊人数据。
J Pharm Sci. 2020 Jan;109(1):690-695. doi: 10.1016/j.xphs.2019.10.064. Epub 2019 Nov 2.
3
Protein aggregation - Mechanisms, detection, and control.蛋白质聚集:机制、检测与控制。
Int J Pharm. 2018 Oct 25;550(1-2):251-268. doi: 10.1016/j.ijpharm.2018.08.043. Epub 2018 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验