Liu Yen-Liang, Perillo Evan P, Ang Phyllis, Kim Mirae, Nguyen Duc Trung, Blocher Katherine, Chen Yu-An, Liu Cong, Hassan Ahmed M, Vu Huong T, Chen Yuan-I, Dunn Andrew K, Yeh Hsin-Chih
Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan.
Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan.
ACS Nano. 2020 Jul 28;14(7):7927-7939. doi: 10.1021/acsnano.9b08045. Epub 2020 Jul 15.
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of (linear to bent) from 3.2 to 10.7 s. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
在此,我们展示了一种三维双色双粒子追踪(3D - 2C - DPT)技术,该技术能够在三维空间中同时定位两个光谱特性不同的目标,时间分辨率低至5毫秒。两个目标的追踪分离距离范围为33至250纳米,对于静态目标追踪精度约为15纳米,对于自由扩散目标追踪精度约为35纳米。由于每个目标都是单独定位的,因此可以提取大量数据,例如两个目标之间的相对三维位置、二维旋转以及分离距离。利用这项技术,我们将双链DNA(dsDNA)连接的哑铃状二聚体转变为纳米级光学尺,通过操控dsDNA连接体的设计(1个切口、3个核苷酸、6个核苷酸或9个核苷酸的单链缺口)来量化游离溶液中带切口或缺口的dsDNA分子的弯曲动力学,结果显示(从线性到弯曲)的增加时间从3.2秒至10.7秒。然后,3D - 2C - DPT被应用于观察抗体偶联纳米颗粒在活细胞质膜上着陆时的平移和旋转运动,揭示了可能由于与膜受体相互作用导致的旋转减少。这项研究表明,这种3D - 2C - DPT技术是一种揭示生物分子构象变化和质膜上分子间相互作用的新工具。