Nozue Shuho, Ali Rfaqat, Wu Ying, Habuchi Satoshi
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwa, Saudi Arabia.
Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Nat Commun. 2025 Jul 22;16(1):6728. doi: 10.1038/s41467-025-61953-1.
3D single-particle tracking is a critical imaging technique for visualizing molecular motion in complex environments, including biological cells. Expanding the trackable depth of the 3D tracking technique to a greater range would broaden its applicability to larger biological samples. Most high-throughput 3D tracking techniques rely on the engineering of the point spread function of the optical system to precisely determine the 3D coordinate of the particle using spatial light modulators. Here, we report 3D single-particle tracking using a birefringent material, mica, as a substrate for mounting a sample. The spatial pattern of the fluorescence emitted by fluorescent nanoparticles captured at the image plane shows an axial position dependence over the tens of micrometers range due to the birefringent characteristic of the mica substrate, enabling us to localize the emitter with an accuracy better than 30 nm over an axial range of 30 µm. We demonstrate that our 3D tracking method can simultaneously track multiple particles separated by a 30 µm distance in the axial axis. We further validate our 3D tracking applicability in plant cells, which are significantly larger than animal cells. This work contributes to advancing single-particle 3D tracking using birefringent substrates with unique optical characteristics.
三维单粒子追踪是一种用于可视化复杂环境(包括生物细胞)中分子运动的关键成像技术。将三维追踪技术的可追踪深度扩展到更大范围将拓宽其在更大生物样本中的适用性。大多数高通量三维追踪技术依靠光学系统的点扩散函数工程,利用空间光调制器精确确定粒子的三维坐标。在此,我们报告了使用双折射材料云母作为样品安装基底的三维单粒子追踪方法。由于云母基底的双折射特性,在图像平面捕获的荧光纳米粒子发射的荧光空间图案在几十微米范围内显示出轴向位置依赖性,这使我们能够在30微米的轴向范围内以优于30纳米的精度定位发射体。我们证明,我们的三维追踪方法可以同时追踪在轴向轴上相隔30微米距离的多个粒子。我们进一步验证了我们的三维追踪方法在比动物细胞大得多的植物细胞中的适用性。这项工作有助于推进使用具有独特光学特性的双折射基底进行单粒子三维追踪。