Suppr超能文献

使用机器学习对年轻CBA/CaJ小鼠的听觉惊跳反射波形进行自动分类。

Automated classification of acoustic startle reflex waveforms in young CBA/CaJ mice using machine learning.

作者信息

Fawcett Timothy J, Cooper Chad S, Longenecker Ryan J, Walton Joseph P

机构信息

Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, USA; Research Computing, University of South Florida, Tampa, FL, USA; Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA.

Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, USA.

出版信息

J Neurosci Methods. 2020 Oct 1;344:108853. doi: 10.1016/j.jneumeth.2020.108853. Epub 2020 Jul 12.

Abstract

BACKGROUND

The acoustic startle response (ASR) is a simple reflex that results in a whole body motor response after animals hear a brief loud sound and is used as a multisensory tool across many disciplines. Unfortunately, a method of how to record, process, and analyze ASRs has yet to be standardized, leading to high variability in the collection, analysis, and interpretation of ASRs within and between laboratories.

NEW METHOD

ASR waveforms collected from young adult CBA/CaJ mice were normalized with features extracted from the waveform, the resulting power spectral density estimates, and the continuous wavelet transforms. The features were then partitioned into training and test/validation sets. Machine learning methods from different families of algorithms were used to combine startle-related features into robust predictive models to predict whether an ASR waveform is a startle or non-startle.

RESULTS

An ensemble of several machine learning models resulted in an extremely robust model to predict whether an ASR waveform is a startle or non-startle with a mean ROC of 0.9779, training accuracy of 0.9993, and testing accuracy of 0.9301.

COMPARISON WITH EXISTING METHODS

ASR waveforms analyzed using the threshold and RMS techniques resulted in over 80% of accepted startles actually being non-startles when manually classified versus 2.2% for the machine learning method, resulting in statistically significant differences in ASR metrics (such as startle amplitude and pre-pulse inhibition) between classification methods.

CONCLUSIONS

The machine learning approach presented in this paper can be adapted to nearly any ASR paradigm to accurately process, sort, and classify startle responses.

摘要

背景

听觉惊吓反应(ASR)是一种简单的反射,动物听到短暂的响亮声音后会产生全身运动反应,并且在许多学科中被用作一种多感官工具。不幸的是,如何记录、处理和分析ASR的方法尚未标准化,导致不同实验室内部和之间在ASR的收集、分析和解释方面存在很大差异。

新方法

从年轻成年CBA/CaJ小鼠收集的ASR波形通过从波形中提取的特征、所得的功率谱密度估计值和连续小波变换进行归一化。然后将这些特征划分为训练集和测试/验证集。使用来自不同算法家族的机器学习方法将与惊吓相关的特征组合成强大的预测模型,以预测ASR波形是惊吓还是非惊吓。

结果

几个机器学习模型的集成产生了一个极其强大的模型,用于预测ASR波形是惊吓还是非惊吓,平均受试者工作特征曲线下面积(ROC)为0.9779,训练准确率为0.9993,测试准确率为0.9301。

与现有方法的比较

使用阈值和均方根(RMS)技术分析的ASR波形在人工分类时,超过80%被接受的惊吓实际上是非惊吓,而机器学习方法为2.2%,这导致分类方法之间在ASR指标(如惊吓幅度和预脉冲抑制)上存在统计学显著差异。

结论

本文提出的机器学习方法几乎可以适用于任何ASR范式,以准确地处理、分类和区分惊吓反应。

相似文献

1
Automated classification of acoustic startle reflex waveforms in young CBA/CaJ mice using machine learning.
J Neurosci Methods. 2020 Oct 1;344:108853. doi: 10.1016/j.jneumeth.2020.108853. Epub 2020 Jul 12.
2
3
An improved approach to separating startle data from noise.
J Neurosci Methods. 2015 Sep 30;253:206-17. doi: 10.1016/j.jneumeth.2015.07.001. Epub 2015 Jul 9.
4
Addressing variability in the acoustic startle reflex for accurate gap detection assessment.
Hear Res. 2018 Jun;363:119-135. doi: 10.1016/j.heares.2018.03.013. Epub 2018 Mar 13.
5
Universal automated classification of the acoustic startle reflex using machine learning.
Hear Res. 2023 Feb;428:108667. doi: 10.1016/j.heares.2022.108667. Epub 2022 Dec 15.
8
Reduced amplitude and slowed latency of the acoustic startle response in adolescents and adults with 22q11.2 deletion syndrome.
Schizophr Res. 2024 Jul;269:9-17. doi: 10.1016/j.schres.2024.04.022. Epub 2024 May 3.
10
The role of the Ventral Nucleus of the Trapezoid Body in the auditory prepulse inhibition of the acoustic startle reflex.
Hear Res. 2024 Sep 1;450:109070. doi: 10.1016/j.heares.2024.109070. Epub 2024 Jun 14.

引用本文的文献

1
Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle.
Front Neurosci. 2024 Aug 7;18:1452450. doi: 10.3389/fnins.2024.1452450. eCollection 2024.
2
Universal automated classification of the acoustic startle reflex using machine learning.
Hear Res. 2023 Feb;428:108667. doi: 10.1016/j.heares.2022.108667. Epub 2022 Dec 15.
3
Congenital Deafness and Recent Advances Towards Restoring Hearing Loss.
Curr Protoc. 2021 Mar;1(3):e76. doi: 10.1002/cpz1.76.
4

本文引用的文献

2
Machine learning approaches for pathologic diagnosis.
Virchows Arch. 2019 Aug;475(2):131-138. doi: 10.1007/s00428-019-02594-w. Epub 2019 Jun 20.
3
A new era: artificial intelligence and machine learning in prostate cancer.
Nat Rev Urol. 2019 Jul;16(7):391-403. doi: 10.1038/s41585-019-0193-3.
4
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
5
Quantitative Comparison of Photoplethysmographic Waveform Characteristics: Effect of Measurement Site.
Front Physiol. 2019 Mar 5;10:198. doi: 10.3389/fphys.2019.00198. eCollection 2019.
7
8
Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential.
Neurosci Biobehav Rev. 2017 Jun;77:194-208. doi: 10.1016/j.neubiorev.2017.03.009. Epub 2017 Mar 19.
9
Deep Learning in Medical Image Analysis.
Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9.
10
Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment.
Hear Res. 2016 Sep;339:80-93. doi: 10.1016/j.heares.2016.06.006. Epub 2016 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验