School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210029, China.
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210029, China.
Comb Chem High Throughput Screen. 2021;24(7):921-932. doi: 10.2174/1386207323666200715171334.
The manual identification of Fructus Crataegi processed products is inefficient and unreliable. Therefore, efficient identification of the Fructus Crataegis' processed products is important.
In order to efficiently identify Fructus Crataegis processed products with different odor characteristics, a new method based on an electronic nose and convolutional neural network is proposed.
First, the original smell of Fructus Crataegis processed products is obtained by using the electronic nose and then preprocessed. Next, feature extraction is carried out on the preprocessed data through convolution pooling layer L, convolution pooling layer L and a full connection layer L. Thus, the feature vector of the processed products can be obtained. Then, the recognition model for Fructus Grataegis processed products is constructed, and the model is trained to obtain the optimized parameters: filters F1 and F2, bias vectors B1, B2, B3, and B4, matrices M1 and M2. Finally, the features of the target processed products are extracted through the trained parameters to achieve accurate prediction.
The experimental results show that the proposed method has higher accuracy for the identification of Fructus Crataegis processed products, and is competitive with other machine learning based methods.
The method proposed in this paper is effective for the identification of Fructus Crataegi processed products.
手工鉴别炮制山楂的方法效率低且不可靠。因此,高效鉴别炮制山楂的方法很重要。
为了高效鉴别具有不同气味特征的炮制山楂,提出一种基于电子鼻和卷积神经网络的新方法。
首先,利用电子鼻获取炮制山楂的原始气味并进行预处理。然后,通过卷积池化层 L、卷积池化层 L 和全连接层 L 对预处理后的数据进行特征提取,从而得到炮制产品的特征向量。然后,构建炮制山楂产品的识别模型,通过训练得到优化参数:滤波器 F1 和 F2、偏置向量 B1、B2、B3 和 B4、矩阵 M1 和 M2。最后,通过训练后的参数提取目标炮制产品的特征,实现准确预测。
实验结果表明,所提出的方法对炮制山楂的识别具有更高的准确性,并且与其他基于机器学习的方法具有竞争力。
本文提出的方法对于炮制山楂的鉴别是有效的。