Hu Yujie, Wang Changzhen, Li Ruiyang, Wang Fahui
Department of Geography, University of Florida, Gainesville, FL 32611.
UF Informatics Institute, University of Florida, Gainesville, FL 32611.
J Transp Geogr. 2020 Jun;86. doi: 10.1016/j.jtrangeo.2020.102770. Epub 2020 Jun 15.
Estimating a massive drive time matrix between locations is a practical but challenging task. The challenges include availability of reliable road network (including traffic) data, programming expertise, and access to high-performance computing resources. This research proposes a method for estimating a nationwide drive time matrix between ZIP code areas in the U.S.-a geographic unit at which many national datasets such as health information are compiled and distributed. The method (1) does not rely on intensive efforts in data preparation or access to advanced computing resources, (2) uses algorithms of varying complexity and computational time to estimate drive times of different trip lengths, and (3) accounts for both interzonal and intrazonal drive times. The core design samples ZIP code pairs with various intensities according to trip lengths and derives the drive times via Google Maps API, and the Google times are then used to adjust and improve some primitive estimates of drive times with low computational costs. The result provides a valuable resource for researchers.
估算地点之间的大规模驾车时间矩阵是一项实际但具有挑战性的任务。挑战包括可靠道路网络(包括交通)数据的可用性、编程专业知识以及对高性能计算资源的访问。本研究提出了一种估算美国邮政编码区域之间全国驾车时间矩阵的方法——邮政编码区域是一个地理单元,许多国家数据集(如健康信息)在此进行汇编和分发。该方法(1)不依赖于数据准备方面的大量工作或对先进计算资源的访问;(2)使用复杂度和计算时间各异的算法来估算不同行程长度的驾车时间;(3)同时考虑区域间和区域内的驾车时间。核心设计根据行程长度以不同强度对邮政编码对进行抽样,并通过谷歌地图应用程序编程接口得出驾车时间,然后利用谷歌时间来调整和改进一些计算成本较低的驾车时间初步估算值。研究结果为研究人员提供了宝贵资源。