Ai Changzhi, Li Jin, Yang Liang, Wang Zhipeng, Wang Zhao, Zeng Yamei, Deng Rong, Lin Shiwei, Wang Cai-Zhuang
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.
School of Science, Hainan University, Haikou, 570228, P. R. China.
ChemSusChem. 2020 Sep 18;13(18):4985-4993. doi: 10.1002/cssc.202001048. Epub 2020 Aug 4.
Z-scheme photocatalytic systems are an ideal band alignment structure for photocatalysis because of the high separation efficiency of photo-induced carriers while simultaneously preserving the strong reduction activity of electrons and oxidation activity of holes. However, the design and construction of Z-scheme photocatalysts is challenging because of the need for appropriate energy band alignment and built-in electric field. Here, we propose a novel approach to a Z-scheme photocatalytic system using density functional theory calculations with the HSE06 hybrid functional. The undesirable type-I g-C N /MoSe heterojunction is transformed into a direct Z-scheme system through boron doping of g-C N (B-doped C N /MoSe ). Detailed analysis of the total and partial density of states, work functions and differential charge density distribution of the B-doped C N /MoSe heterojunction shows the proper band alignment and existence of a built-in electric field at the interface, with the direction from g-C N to MoSe , demonstrating a direct Z-scheme heterojunction. Further investigation on the absorption spectra reveals a large enhancement of the light absorption efficiency after boron doping. The results consistently confirm that electronic structures and photocatalytic performance can be effectively manipulated by a facile boron doping. Modulating the band alignment of heterojunctions in this way provides valuable insights for the rational design of highly efficient heterojunction-based photocatalytic systems.
Z型光催化体系是光催化的理想能带排列结构,因为光生载流子的分离效率高,同时能保持电子的强还原活性和空穴的氧化活性。然而,由于需要合适的能带排列和内建电场,Z型光催化剂的设计和构建具有挑战性。在此,我们提出一种利用HSE06杂化泛函进行密度泛函理论计算的新型Z型光催化体系构建方法。通过对g-C₃N₄进行硼掺杂(B掺杂的C₃N₄/MoSe₂),将不理想的I型g-C₃N₄/MoSe₂异质结转化为直接Z型体系。对B掺杂的C₃N₄/MoSe₂异质结的态密度、功函数和差分电荷密度分布进行详细分析,结果表明其具有合适的能带排列以及界面处内建电场的存在,电场方向从g-C₃N₄指向MoSe₂,证明这是一个直接Z型异质结。对吸收光谱的进一步研究表明,硼掺杂后光吸收效率大幅提高。这些结果一致证实,通过简单的硼掺杂可以有效调控电子结构和光催化性能。以这种方式调节异质结的能带排列为合理设计高效的基于异质结的光催化体系提供了有价值的见解。