Suppr超能文献

利用网络分析和深度学习识别自杀未遂的医学致死性:全国性研究

Identifying the Medical Lethality of Suicide Attempts Using Network Analysis and Deep Learning: Nationwide Study.

作者信息

Kim Bora, Kim Younghoon, Park C Hyung Keun, Rhee Sang Jin, Kim Young Shin, Leventhal Bennett L, Ahn Yong Min, Paik Hyojung

机构信息

Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States.

Center for Supercomputing Applications, Division of Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, Republic of Korea.

出版信息

JMIR Med Inform. 2020 Jul 9;8(7):e14500. doi: 10.2196/14500.

Abstract

BACKGROUND

Suicide is one of the leading causes of death among young and middle-aged people. However, little is understood about the behaviors leading up to actual suicide attempts and whether these behaviors are specific to the nature of suicide attempts.

OBJECTIVE

The goal of this study was to examine the clusters of behaviors antecedent to suicide attempts to determine if they could be used to assess the potential lethality of the attempt. To accomplish this goal, we developed a deep learning model using the relationships among behaviors antecedent to suicide attempts and the attempts themselves.

METHODS

This study used data from the Korea National Suicide Survey. We identified 1112 individuals who attempted suicide and completed a psychiatric evaluation in the emergency room. The 15-item Beck Suicide Intent Scale (SIS) was used for assessing antecedent behaviors, and the medical outcomes of the suicide attempts were measured by assessing lethality with the Columbia Suicide Severity Rating Scale (C-SSRS; lethal suicide attempt >3 and nonlethal attempt ≤3).

RESULTS

Using scores from the SIS, individuals who had lethal and nonlethal attempts comprised two different network nodes with the edges representing the relationships among nodes. Among the antecedent behaviors, the conception of a method's lethality predicted suicidal behaviors with severe medical outcomes. The vectorized relationship values among the elements of antecedent behaviors in our deep learning model (E-GONet) increased performances, such as F1 and area under the precision-recall gain curve (AUPRG), for identifying lethal attempts (up to 3% for F1 and 32% for AUPRG), as compared with other models (mean F1: 0.81 for E-GONet, 0.78 for linear regression, and 0.80 for random forest; mean AUPRG: 0.73 for E-GONet, 0.41 for linear regression, and 0.69 for random forest).

CONCLUSIONS

The relationships among behaviors antecedent to suicide attempts can be used to understand the suicidal intent of individuals and help identify the lethality of potential suicide attempts. Such a model may be useful in prioritizing cases for preventive intervention.

摘要

背景

自杀是中青年人群的主要死因之一。然而,对于导致实际自杀未遂的行为以及这些行为是否特定于自杀未遂的性质,人们了解甚少。

目的

本研究的目的是检查自杀未遂之前的行为集群,以确定它们是否可用于评估自杀未遂的潜在致死性。为实现这一目标,我们利用自杀未遂之前的行为与自杀未遂本身之间的关系开发了一种深度学习模型。

方法

本研究使用了韩国国家自杀调查的数据。我们确定了1112名自杀未遂并在急诊室完成精神评估的个体。使用15项贝克自杀意图量表(SIS)评估之前的行为,并通过哥伦比亚自杀严重程度评定量表(C-SSRS;致命自杀未遂>3且非致命未遂≤3)评估自杀未遂的医疗结果。

结果

利用SIS的分数,有致命和非致命未遂的个体构成了两个不同的网络节点,边代表节点之间的关系。在之前的行为中,对方法致死性的认知预测了具有严重医疗后果的自杀行为。与其他模型相比,我们深度学习模型(E-GONet)中之前行为要素之间的矢量化关系值提高了识别致命未遂的性能,如F1和精确召回增益曲线下面积(AUPRG)(F1提高了3%,AUPRG提高了32%)(E-GONet的平均F1为0.81,线性回归为0.78,随机森林为0.80;平均AUPRG:E-GONet为0.73,线性回归为0.41,随机森林为0.69)。

结论

自杀未遂之前的行为之间的关系可用于了解个体的自杀意图,并有助于识别潜在自杀未遂的致死性。这样的模型可能有助于对预防干预的病例进行优先排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9168/7380907/4a526e7cf513/medinform_v8i7e14500_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验