Suppr超能文献

基于多层感知器遗传算法改进金属板料成形回弹预测

Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm.

作者信息

Trzepieciński Tomasz, Lemu Hirpa G

机构信息

Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland.

Faculty of Science and Technology, University of Stavanger; N-4036 Stavanger, Norway.

出版信息

Materials (Basel). 2020 Jul 14;13(14):3129. doi: 10.3390/ma13143129.

Abstract

This paper presents the results of predictions of springback of cold-rolled anisotropic steel sheets using an approach based on a multilayer perceptron-based artificial neural network (ANN) coupled with a genetic algorithm (GA). A GA was used to optimise the number of input parameters of the multilayer perceptron that was trained using different algorithms. In the investigations, the mechanical parameters of sheet material determined in uniaxial tensile tests were used as input parameters to train the ANN. The springback coefficient, determined experimentally in the V-die air bending test, was used as an output variable. It was found that specimens cut along the rolling direction exhibit higher values of springback coefficient than specimens cut transverse to the rolling direction. An increase in the bending angle leads to an increase in the springback coefficient. A GA-based analysis has shown that Young's modulus and ultimate tensile stress are variables having no significant effect on the coefficient of springback. Multilayer perceptrons trained by back propagation, conjugate gradients and Lavenberg-Marquardt algorithms definitely favour punch bend depth under load as the most important variables affecting the springback coefficient.

摘要

本文介绍了采用基于多层感知器的人工神经网络(ANN)与遗传算法(GA)相结合的方法对冷轧各向异性钢板回弹进行预测的结果。遗传算法用于优化使用不同算法训练的多层感知器的输入参数数量。在研究中,将单轴拉伸试验中确定的板材力学参数用作训练人工神经网络的输入参数。在V型模具空气弯曲试验中通过实验确定的回弹系数用作输出变量。结果发现,沿轧制方向切割的试样的回弹系数值高于垂直于轧制方向切割的试样。弯曲角度的增加会导致回弹系数增加。基于遗传算法的分析表明,杨氏模量和极限拉伸应力是对回弹系数没有显著影响的变量。通过反向传播、共轭梯度和Lavenberg-Marquardt算法训练的多层感知器肯定支持将加载下的冲头弯曲深度作为影响回弹系数的最重要变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验