Peña-Alvarez Miriam, Afonina Veronika, Dalladay-Simpson Philip, Liu Xiao-Di, Howie Ross T, Cooke Peter I C, Magdau Ioan B, Ackland Graeme J, Gregoryanz Eugene
Centre for Science at Extreme Conditions & The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K.
Center for High Pressure Science & Technology Advanced Research, 1690 Cailun Road, Shanghai 201203, P. R. China.
J Phys Chem Lett. 2020 Aug 20;11(16):6626-6631. doi: 10.1021/acs.jpclett.0c01736. Epub 2020 Aug 4.
Raman spectroscopy demonstrates that the rotational spectrum of solid hydrogen, and its isotope deuterium, undergoes profound transformations upon compression while still remaining in phase I. We show that these changes are associated with a loss of quantum character in the rotational modes and that the angular momentum gradually ceases to be a good quantum rotational number. Through isotopic comparisons of the rotational Raman contributions, we reveal that hydrogen and deuterium evolve from a quantum rotor to a harmonic oscillator. We find that the mechanics behind this transformation can be well-described by a quantum-mechanical single inhibited rotor, accurately reproducing the striking spectroscopic changes observed in phase I.
拉曼光谱表明,固态氢及其同位素氘的转动光谱在压缩时会发生深刻变化,同时仍处于相I。我们表明,这些变化与转动模式中量子特性的丧失有关,并且角动量逐渐不再是一个良好的量子转动数。通过对转动拉曼贡献的同位素比较,我们揭示了氢和氘从量子转子演变为简谐振子。我们发现,这种转变背后的力学可以用一个量子力学单抑制转子很好地描述,准确地再现了在相I中观察到的显著光谱变化。