Suppr超能文献

可积微分差分方程的有理递归算子

Rational Recursion Operators for Integrable Differential-Difference Equations.

作者信息

Carpentier Sylvain, Mikhailov Alexander V, Wang Jing Ping

机构信息

Mathematics Department, Columbia University, New York, USA.

Applied Mathematics Department, University of Leeds, Leeds, UK.

出版信息

Commun Math Phys. 2019;370(3):807-851. doi: 10.1007/s00220-019-03548-8. Epub 2019 Aug 19.

Abstract

In this paper we introduce the concept of preHamiltonian pairs of difference operators, demonstrate their connections with Nijenhuis operators and give a criteria for the existence of weakly nonlocal inverse recursion operators for differential-difference equations. We begin with a rigorous setup of the problem in terms of the skew field of (pseudo-difference) operators over a difference field with a zero characteristic subfield of constants and the principal ideal ring of matrix rational (pseudo-difference) operators. In particular, we give a criteria for a rational operator to be weakly nonlocal. A difference operator is called preHamiltonian, if its image is a Lie subalgebra with respect to the Lie bracket on the difference field. Two preHamiltonian operators form a preHamiltonian pair if any linear combination of them is preHamiltonian. Then we show that a preHamiltonian pair naturally leads to a Nijenhuis operator, and a Nijenhuis operator can be represented in terms of a preHamiltonian pair. This provides a systematic method to check whether a rational operator is Nijenhuis. As an application, we construct a preHamiltonian pair and thus a Nijenhuis recursion operator for the differential-difference equation recently discovered by Adler and Postnikov. The Nijenhuis operator obtained is not weakly nonlocal. We prove that it generates an infinite hierarchy of local commuting symmetries. We also illustrate our theory on the well known examples including the Toda, the Ablowitz-Ladik, and the Kaup-Newell differential-difference equations.

摘要

在本文中,我们引入了差分算子的预哈密顿对的概念,展示了它们与尼延胡伊斯算子的联系,并给出了微分 - 差分方程弱非局部逆递归算子存在性的一个判别准则。我们首先从一个严格的问题设定开始,该设定基于一个具有零特征常数子域的差分域上的(伪差分)算子的斜域以及矩阵有理(伪差分)算子的主理想环。特别地,我们给出了一个有理算子为弱非局部的判别准则。如果一个差分算子的像关于差分域上的李括号是一个李子代数,则称该差分算子为预哈密顿的。如果两个预哈密顿算子的任何线性组合都是预哈密顿的,那么这两个预哈密顿算子就形成一个预哈密顿对。然后我们表明,一个预哈密顿对自然地引出一个尼延胡伊斯算子,并且一个尼延胡伊斯算子可以用一个预哈密顿对来表示。这提供了一种系统的方法来检验一个有理算子是否为尼延胡伊斯算子。作为一个应用,我们为阿德勒和波斯托伊科夫最近发现的微分 - 差分方程构造了一个预哈密顿对,从而得到一个尼延胡伊斯递归算子。所得到的尼延胡伊斯算子不是弱非局部的。我们证明它生成了一个无限的局部对易对称族。我们还在一些著名的例子上说明了我们的理论,包括托达方程、阿布洛维茨 - 拉迪克方程和考普 - 纽厄尔微分 - 差分方程。

相似文献

1
Rational Recursion Operators for Integrable Differential-Difference Equations.可积微分差分方程的有理递归算子
Commun Math Phys. 2019;370(3):807-851. doi: 10.1007/s00220-019-03548-8. Epub 2019 Aug 19.
2
Reflective prolate-spheroidal operators and the KP/KdV equations.反射扁长球算子与 KP/KdV 方程。
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18310-18315. doi: 10.1073/pnas.1906098116. Epub 2019 Aug 27.
3
A family of wave equations with some remarkable properties.具有一些显著特性的波动方程族。
Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170763. doi: 10.1098/rspa.2017.0763. Epub 2018 Feb 14.
4
Discrete rogue waves of the Ablowitz-Ladik and Hirota equations.阿布洛维茨-拉迪克方程和广田方程的离散 rogue 波。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 2):026602. doi: 10.1103/PhysRevE.82.026602. Epub 2010 Aug 11.
5
Uniform estimation of orientation using local and nonlocal 2-D energy operators.
Opt Express. 2005 Oct 3;13(20):8097-121. doi: 10.1364/opex.13.008097.
6
Integrable Systems and Spacetime Dynamics.可积系统与时空动力学
Phys Rev Lett. 2021 Oct 15;127(16):161601. doi: 10.1103/PhysRevLett.127.161601.
7
In-context operator learning with data prompts for differential equation problems.基于数据提示的上下文算子学习用于微分方程问题
Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2310142120. doi: 10.1073/pnas.2310142120. Epub 2023 Sep 19.
9
Generalizations of the short pulse equation.短脉冲方程的推广。
Lett Math Phys. 2018;108(4):927-947. doi: 10.1007/s11005-017-1022-3. Epub 2017 Nov 10.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验