Nazzal Belal, Nedelin Anton
Department of Physics, Technion, 32000 Haifa, Israel.
Section de Mathématiques, Université de Genève, 1211 Genève 4, Switzerland.
Lett Math Phys. 2023;113(5):94. doi: 10.1007/s11005-023-01714-7. Epub 2023 Sep 5.
We study superconformal indices of 4 compactifications of the 6 minimal conformal matter theories on a punctured Riemann surface. Introduction of supersymmetric surface defect in these theories is done at the level of the index by the action of the finite difference operators on the corresponding indices. There exist at least three different types of such operators according to three types of punctures with and global symmetries. We mainly concentrate on case and derive explicit expression for an infinite tower of difference operators generalizing the van Diejen model. We check various properties of these operators originating from the geometry of compactifications. We also provide an expression for the kernel function of both our operator and previously derived generalization of van Diejen model. Finally, we also consider compactifications with -type punctures and derive the full tower of commuting difference operators corresponding to this root system generalizing the result of our previous paper.
我们研究了6个最小共形物质理论在有孔黎曼曲面上的4种紧致化的超共形指标。在这些理论中,通过有限差分算子对相应指标的作用,在指标层面引入超对称表面缺陷。根据具有不同全局对称性的三种类型的穿孔,存在至少三种不同类型的此类算子。我们主要关注某一情况,并推导了推广范迪耶恩模型的无穷差分算子塔的显式表达式。我们检验了这些算子源自紧致化几何的各种性质。我们还给出了我们的算子以及先前推导的范迪耶恩模型推广的核函数的表达式。最后,我们还考虑了具有某类穿孔的紧致化,并推导了对应于该根系的完整交换差分算子塔,推广了我们之前论文的结果。