Suppr超能文献

基于 GBDT 的跌倒检测,使用来自姿势传感器和人体骨骼提取的综合数据。

GBDT-Based Fall Detection with Comprehensive Data from Posture Sensor and Human Skeleton Extraction.

机构信息

College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China.

Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

J Healthc Eng. 2020 Jun 25;2020:8887340. doi: 10.1155/2020/8887340. eCollection 2020.

Abstract

Since fall is happening with increasing frequency, it has been a major public health problem in an aging society. There are considerable demands to distinguish fall down events of seniors with the characteristics of accurate detection and real-time alarm. However, some daily activities are erroneously signaled as falls and there are too many false alarms in actual application. In order to resolve this problem, this paper designs and implements a comprehensive fall detection framework on the basis of inertial posture sensors and surveillance cameras. In the proposed system framework, data sources representing behavior characteristics to indicate potential fall are derived from wearable triaxial accelerometers and monitoring videos of surveillance cameras. Moreover, the NB-IoT based communication mode is adopted to transmit wearable sensory data to the Internet for subsequent analysis. Furthermore, a Gradient Boosting Decision Tree (GBDT) classifier-based fall detection algorithm (GBDT-FD in short) with comprehensive data fusion of posture sensor and human video skeleton is proposed to improve detection accuracy. Experimental results verify the good performance of the proposed GBDT-FD algorithm compared to six kinds of existing fall detection algorithms, including SVM-based fall detection, NN-based fall detection, etc. Finally, we implement the proposed integrated systems including wearable posture sensors and monitoring software on the Cloud Server.

摘要

由于秋季的发生频率越来越高,它已成为老龄化社会中的一个主要公共卫生问题。人们对具有准确检测和实时报警特点的老年人跌倒事件有相当大的需求。然而,一些日常活动被错误地标记为跌倒,并且在实际应用中存在太多的误报。为了解决这个问题,本文基于惯性姿态传感器和监控摄像机设计并实现了一个全面的跌倒检测框架。在所提出的系统框架中,源自可穿戴三轴加速度计和监控摄像机的视频的表示行为特征的数据被用来指示潜在的跌倒。此外,采用基于 NB-IoT 的通信模式将可穿戴传感器数据传输到互联网进行后续分析。此外,提出了一种基于梯度提升决策树(GBDT)分类器的跌倒检测算法(简称 GBDT-FD),它对姿态传感器和人体视频骨骼进行了综合数据融合,以提高检测精度。实验结果验证了所提出的 GBDT-FD 算法与六种现有的跌倒检测算法(包括基于 SVM 的跌倒检测、基于 NN 的跌倒检测等)相比的良好性能。最后,我们在云服务器上实现了包括可穿戴姿态传感器和监控软件在内的综合系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验