Suppr超能文献

出芽酵母细胞周期的扩展鲁棒布尔网络

Extended Robust Boolean Network of Budding Yeast Cell Cycle.

作者信息

Shafiekhani Sajad, Shafiekhani Mojtaba, Rahbar Sara, Jafari Amir Homayoun

机构信息

Department of Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

J Med Signals Sens. 2020 Apr 25;10(2):94-104. doi: 10.4103/jmss.JMSS_40_19. eCollection 2020 Apr-Jun.

Abstract

BACKGROUND

How to explore the dynamics of transition probabilities between phases of budding yeast cell cycle (BYCC) network based on the dynamics of protein activities that control this network? How to identify the robust structure of protein interactions of BYCC Boolean network (BN)? Budding yeast allows scientists to put experiments into effect in order to discover the intracellular cell cycle regulating structures which are well simulated by mathematical modeling.

METHODS

We extended an available deterministic BN of proteins responsible for the cell cycle to a Markov chain model containing apoptosis besides G1, S, G2, M, and stationary G1. Using genetic algorithm (GA), we estimated the kinetic parameters of the extended BN model so that the subsequent transition probabilities derived using Markov chain model of cell states as normal cell cycle becomes the maximum while the structure of chemical interactions of extended BN of cell cycle becomes more stable.

RESULTS

Using kinetic parameters optimized by GA, the probability of the subsequent transitions between cell cycle phases is maximized. The relative basin size of stationary G1 increased from 86% to 96.48% while the number of attractors decreased from 7 in the original model to 5 in the extended one. Hence, an increase in the robustness of the system has been achieved.

CONCLUSION

The structure of interacting proteins in cell cycle network affects its robustness and probabilities of transitions between different cell cycle phases. Markov chain and BN are good approaches to study the stability and dynamics of the cell cycle network.

摘要

背景

如何基于控制芽殖酵母细胞周期(BYCC)网络的蛋白质活性动态来探索该网络各阶段之间转移概率的动态变化?如何识别BYCC布尔网络(BN)中蛋白质相互作用的稳健结构?芽殖酵母使科学家能够开展实验,以发现可通过数学建模很好模拟的细胞内细胞周期调控结构。

方法

我们将一个现有的负责细胞周期的蛋白质确定性BN扩展为一个马尔可夫链模型,该模型除了包含G1、S、G2、M期和静止G1期外,还包含凋亡过程。使用遗传算法(GA),我们估计了扩展BN模型的动力学参数,以使随后使用细胞状态马尔可夫链模型推导的正常细胞周期转移概率最大化,同时使细胞周期扩展BN的化学相互作用结构更稳定。

结果

使用由GA优化的动力学参数,细胞周期各阶段之间后续转移的概率最大化。静止G1期的相对吸引域大小从86%增加到96.48%,而吸引子数量从原始模型中的7个减少到扩展模型中的5个。因此,实现了系统稳健性的提高。

结论

细胞周期网络中相互作用蛋白质的结构影响其稳健性以及不同细胞周期阶段之间的转移概率。马尔可夫链和BN是研究细胞周期网络稳定性和动态变化的良好方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b052/7359953/18c9256328c5/JMSS-10-94-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验