Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Lab Chip. 2020 Aug 26;20(17):3144-3157. doi: 10.1039/d0lc00579g.
Fast spreading of antimicrobial resistance is now considered a major global health threat. New technologies are required, enabling rapid diagnostics of bacterial infection combined with fast antimicrobial susceptibility testing (AST) for evaluating the efficiency and dosage of antimicrobial compounds in vitro. This work presents an integrated chip-based isothermal nanocalorimetry platform for direct microbial metabolic heat measurements and evaluates its potential for fast AST. Direct detection of the bacteria-generated heat allows monitoring of metabolic activity and antimicrobial action at subinhibitory concentrations in real-time. The high heat sensitivity of the platform enables bacterial growth detection within only a few hours of incubation, whereas growth inhibition upon administration of antibiotics is revealed by a decrease or the absence of the heat signal. Antimicrobial stress results in lag phase extension and metabolic energy spilling. Oxygen consumption and optical density measurements provide a more holistic insight of the metabolic state and the evolution of bacterial biomass. As a proof-of-concept, a metabolic heat-based AST study on Escherichia coli as model organism with 3 clinically relevant antibiotics is performed and the minimum inhibitory concentrations are determined.
抗菌药物耐药性的快速传播现在被认为是一个主要的全球健康威胁。需要新的技术,使能够快速诊断细菌感染,并结合快速抗菌药物敏感性测试(AST),以评估体外抗菌化合物的效率和剂量。本工作提出了一种基于芯片的等温量热法平台,用于直接微生物代谢热测量,并评估其在快速 AST 中的潜力。直接检测细菌产生的热量允许在亚抑菌浓度下实时监测代谢活性和抗菌作用。该平台具有很高的热灵敏度,能够在孵育数小时内检测到细菌的生长,而抗生素给药后生长抑制则表现为热信号的减少或缺失。抗菌应激导致迟滞期延长和代谢能量溢出。耗氧量和光密度测量提供了对代谢状态和细菌生物量演变的更全面的了解。作为概念验证,对大肠杆菌进行了基于代谢热的 AST 研究,用 3 种临床相关抗生素作为模型生物,并确定了最小抑菌浓度。