Suppr超能文献

51 个欧洲国家干预前后 COVID-19 基本再生数的基于数据的推断。

Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries.

机构信息

Computational Science and Engineering Laboratory, ETH Zurich, Switzerland.

Department of Mechanical Engineering, University of Thessaly, Greece.

出版信息

Swiss Med Wkly. 2020 Jul 10;150:w20313. doi: 10.4414/smw.2020.20313. eCollection 2020 Jul 13.

Abstract

The reproduction number is broadly considered as a key indicator for the spreading of the COVID-19 pandemic. Its estimated value is a measure of the necessity and, eventually, effectiveness of interventions imposed in various countries. Here we present an online tool for the data-driven inference and quantification of uncertainties for the reproduction number, as well as the time points of interventions for 51 European countries. The study relied on the Bayesian calibration of the SIR model with data from reported daily infections from these countries. The model fitted the data, for most countries, without individual tuning of parameters. We also compared the results of SIR and SEIR models, which give different estimates of the reproduction number, and provided an analytical relationship between the respective numbers. We deployed a Bayesian inference framework with efficient sampling algorithms, to present a publicly available graphical user interface (https://cse-lab.ethz.ch/coronavirus) that allows the user to assess and compare predictions for pairs of European countries. The results quantified the rate of the disease’s spread before and after interventions, and provided a metric for the effectiveness of non-pharmaceutical interventions in different countries. They also indicated how geographic proximity and the times of interventions affected the progression of the epidemic.

摘要

繁殖数被广泛认为是 COVID-19 大流行传播的关键指标。其估计值是衡量在不同国家实施干预措施的必要性和最终效果的一个指标。在这里,我们为 51 个欧洲国家提供了一个在线工具,用于对繁殖数以及干预时间点进行数据驱动的推断和不确定性量化。该研究依赖于对 SIR 模型进行贝叶斯校准,并使用这些国家报告的每日感染数据。对于大多数国家来说,该模型无需单独调整参数就能拟合数据。我们还比较了 SIR 和 SEIR 模型的结果,这些模型对繁殖数的估计值不同,并提供了它们之间的解析关系。我们采用了一种具有高效抽样算法的贝叶斯推理框架,以提供一个公共可用的图形用户界面(https://cse-lab.ethz.ch/coronavirus),允许用户评估和比较对欧洲国家的预测。结果量化了干预措施实施前后疾病传播的速度,并为不同国家的非药物干预措施的效果提供了一个衡量标准。它们还表明了地理接近度和干预时间如何影响疫情的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验