Qin Sainan, Wang Yuqi, Wu Xu, Zhang Xingpeng, Zhu Yusong, Yu Nengfei, Zhang Yi, Wu Yuping
School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
Polymers (Basel). 2020 Jul 15;12(7):1572. doi: 10.3390/polym12071572.
With the raw materials of poly(vinylidene-co-hexafluoropropylene) (P(VDF-HFP)) and polyamide 6 (PA6, nylon 6), a sandwich-structured composite membrane, PA6/P(VDF-HFP)/PA6, is fabricated via sequential layer-by-layer electrospinning. The nylon-based composite exhibits high absorption to organic liquid electrolyte (270 wt%) owing to its high porosity (90.35%), good mechanical property (17.11 MPa), and outstanding shut-down behavior from approximately 145 to 230 °C. Moreover, the dimensional shrink of a wet PA6 porous membrane immersed into liquid electrolyte is cured due to the existence of the P(VDF-HFP) middle layer. After swelling by the LiPF-based organic liquid electrolyte, the obtained PA6/P(VDF-HFP)/PA6-based gel polymer electrolytes (GPE) shows high ionic conductivity at room temperature (4.2 mS cm), a wide electrochemical stable window (4.8 V), and low activation energy for Li ion conduction (4.68 kJ mol). Benefiting from the precise porosity structure made of the interlaced electrospinning nanofibers and the superior physicochemical properties of the nylon-based composite GPE, the reversible Li ion dissolution/deposition behaviors between the GPE and Li anode are successfully realized with the Li/Li symmetrical cells (current density: 1.0 mA cm; areal capacity: 1.0 mAh cm) proceeding over 400 h at a polarization voltage of no more than 70 mV. Furthermore, the nylon-based composite GPE in assembled Li/LiFePO cells displays good electrochemical stability, high discharge capacity, good cycle durability, and high rate capability. This research provides a new strategy to fabricate gel polymer electrolytes via the electrospinning technique for rechargeable lithium batteries with good electrochemical performance, high security, and low cost.
以聚(偏二氟乙烯 - 六氟丙烯)(P(VDF-HFP))和聚酰胺6(PA6,尼龙6)为原料,通过逐层连续静电纺丝制备了一种三明治结构的复合膜PA6/P(VDF-HFP)/PA6。这种尼龙基复合材料对有机液体电解质具有高吸收性(270 wt%),这归因于其高孔隙率(90.35%)、良好的机械性能(17.11 MPa)以及在约145至230°C范围内出色的热关闭行为。此外,由于存在P(VDF-HFP)中间层,浸入液体电解质中的湿PA6多孔膜的尺寸收缩得以消除。在用基于LiPF的有机液体电解质溶胀后,所得的基于PA6/P(VDF-HFP)/PA6的凝胶聚合物电解质(GPE)在室温下显示出高离子电导率(4.2 mS cm)、宽电化学稳定窗口(4.8 V)以及低锂离子传导活化能(4.68 kJ mol)。受益于由交错的静电纺丝纳米纤维构成的精确孔隙结构以及尼龙基复合GPE的优异物理化学性能,Li/Li对称电池(电流密度:1.0 mA cm;面积容量:1.0 mAh cm)在极化电压不超过70 mV的情况下成功实现了GPE与Li阳极之间可逆的锂离子溶解/沉积行为,持续时间超过400小时。此外,组装在Li/LiFePO电池中的尼龙基复合GPE表现出良好的电化学稳定性、高放电容量、良好的循环耐久性和高倍率性能。本研究提供了一种通过静电纺丝技术制备凝胶聚合物电解质的新策略,用于具有良好电化学性能、高安全性和低成本的可充电锂电池。