Suppr超能文献

固态电池中通过 Coble 蠕变实现的金属锂沉积和剥离。

Li metal deposition and stripping in a solid-state battery via Coble creep.

机构信息

Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nature. 2020 Feb;578(7794):251-255. doi: 10.1038/s41586-020-1972-y. Epub 2020 Feb 3.

Abstract

Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10 MIEC cylinders/solid electrolyte/LiFePO-shows a high capacity of about 164 milliampere hours per gram of LiFePO, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.

摘要

固态锂金属电池需要适应电化学产生的锂内机械应力

对于 135 毫伏的超电势,这种应力可达 1 吉帕斯卡。尽管与移动的腐蚀性锂金属物理接触,但保持固体结构的机械和电化学稳定性是一个苛刻的要求。使用原位透射电子显微镜,我们研究了在由混合离子-电子导体 (MIEC) 制成的大量平行空心管内保持的金属锂或钠的沉积和剥离。在这里,我们表明这些碱金属 - 作为单晶 - 可以通过主要沿 MIEC/金属相界的 Coble 扩散蠕变从管内伸出并缩回。与固体电解质不同,许多 MIEC 在与锂接触时电化学稳定(即在平衡相图上与金属锂有直接的连线),因此这种 Coble 蠕变机制可以有效地缓解应力,保持电子和离子接触,消除固体电解质中间相碎片,并允许锂在 10 微米的距离内可逆沉积/剥离 100 个循环。一个宽 1 厘米的全电池 - 由大约 10 个 MIEC 圆柱体/固体电解质/LiFePO 组成 - 显示出约 164 毫安小时/克 LiFePO 的高容量,并且在超过 50 个循环的时间内几乎没有降解,起始时 Li 的过剩量为 1×。模拟表明,该设计对具有约 100 纳米宽和 10-100 微米深通道的 MIEC 材料选择不敏感。锂金属在 MIEC 通道内的行为表明,使用这种结构可以克服固态锂金属电池中金属-电解质界面的化学和机械稳定性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验