Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nature. 2020 Feb;578(7794):251-255. doi: 10.1038/s41586-020-1972-y. Epub 2020 Feb 3.
Solid-state lithium metal batteries require accommodation of electrochemically generated mechanical stress inside the lithium: this stress can be up to 1 gigapascal for an overpotential of 135 millivolts. Maintaining the mechanical and electrochemical stability of the solid structure despite physical contact with moving corrosive lithium metal is a demanding requirement. Using in situ transmission electron microscopy, we investigated the deposition and stripping of metallic lithium or sodium held within a large number of parallel hollow tubules made of a mixed ionic-electronic conductor (MIEC). Here we show that these alkali metals-as single crystals-can grow out of and retract inside the tubules via mainly diffusional Coble creep along the MIEC/metal phase boundary. Unlike solid electrolytes, many MIECs are electrochemically stable in contact with lithium (that is, there is a direct tie-line to metallic lithium on the equilibrium phase diagram), so this Coble creep mechanism can effectively relieve stress, maintain electronic and ionic contacts, eliminate solid-electrolyte interphase debris, and allow the reversible deposition/stripping of lithium across a distance of 10 micrometres for 100 cycles. A centimetre-wide full cell-consisting of approximately 10 MIEC cylinders/solid electrolyte/LiFePO-shows a high capacity of about 164 milliampere hours per gram of LiFePO, and almost no degradation for over 50 cycles, starting with a 1× excess of Li. Modelling shows that the design is insensitive to MIEC material choice with channels about 100 nanometres wide and 10-100 micrometres deep. The behaviour of lithium metal within the MIEC channels suggests that the chemical and mechanical stability issues with the metal-electrolyte interface in solid-state lithium metal batteries can be overcome using this architecture.
对于 135 毫伏的超电势,这种应力可达 1 吉帕斯卡。尽管与移动的腐蚀性锂金属物理接触,但保持固体结构的机械和电化学稳定性是一个苛刻的要求。使用原位透射电子显微镜,我们研究了在由混合离子-电子导体 (MIEC) 制成的大量平行空心管内保持的金属锂或钠的沉积和剥离。在这里,我们表明这些碱金属 - 作为单晶 - 可以通过主要沿 MIEC/金属相界的 Coble 扩散蠕变从管内伸出并缩回。与固体电解质不同,许多 MIEC 在与锂接触时电化学稳定(即在平衡相图上与金属锂有直接的连线),因此这种 Coble 蠕变机制可以有效地缓解应力,保持电子和离子接触,消除固体电解质中间相碎片,并允许锂在 10 微米的距离内可逆沉积/剥离 100 个循环。一个宽 1 厘米的全电池 - 由大约 10 个 MIEC 圆柱体/固体电解质/LiFePO 组成 - 显示出约 164 毫安小时/克 LiFePO 的高容量,并且在超过 50 个循环的时间内几乎没有降解,起始时 Li 的过剩量为 1×。模拟表明,该设计对具有约 100 纳米宽和 10-100 微米深通道的 MIEC 材料选择不敏感。锂金属在 MIEC 通道内的行为表明,使用这种结构可以克服固态锂金属电池中金属-电解质界面的化学和机械稳定性问题。