Suppr超能文献

聚合物囊泡的定量膜负载

Quantitative membrane loading of polymer vesicles.

作者信息

Ghoroghchian P Peter, Lin John J, Brannan Aaron K, Frail Paul R, Bates Frank S, Therien Michael J, Hammer Daniel A

机构信息

School of Engineering and Applied Science, and Institute for Medicine and Engineering, University of Pennsylvania, 120 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104-6323, USA.

Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.

出版信息

Soft Matter. 2006 Oct 17;2(11):973-980. doi: 10.1039/b604212k.

Abstract

We utilize a series of structurally homologous, multi-porphyrin-based, fluorophores (PBFs) in order to explore the capacity of polymer vesicles (polymersomes) to stably incorporate large hydrophobic molecules, non-covalently within their thick lamellar membranes. Through aqueous hydration of dry, uniform thin-films of amphiphilic polymer and PBF species deposited on Teflon, self-assembled polymersomes are readily generated incorporating the hydrophobic fluorophores in prescribed molar ratios within their membranes. The size-dependent spectral properties of the PBFs allow for ready optical verification ( steady-state absorption and emission spectroscopy) of the extent of vesicle membrane loading and enable delineation of intermembranous molecular interactions. The resultant effects of PBF membrane-loading on polymersome thermodynamic and mechanical stability are further assessed by cryogenic transmission electron microscopy (cryo-TEM) and micropipet aspiration, respectively. We demonstrate that polymersomes can be loaded at up to 10 mol/wt% concentrations, with hydrophobic molecules that possess sizes comparable to those of large pharmaceutical conjugates ( ranging 1.4-5.4 nm in length and = 0.7-5.4 kg mol), without significantly compromising the robust thermodynamic and mechanical stabilities of these synthetic vesicle assemblies. Due to membrane incorporation, hydrophobic encapsulants are effectively prevented from self-aggregation, able to be highly concentrated in aqueous solution, and successfully shielded from deleterious environmental interactions. Together, these studies present a generalized paradigm for the generation of complex multi-functional materials that combine both hydrophilic and hydrophobic agents, in mesoscopic dimensions, through cooperative self-assembly.

摘要

我们使用了一系列结构同源的、基于多卟啉的荧光团(PBFs),以探索聚合物囊泡(聚合物脂质体)在其厚厚的层状膜内非共价稳定结合大的疏水分子的能力。通过对沉积在聚四氟乙烯上的两亲聚合物和PBF物种的干燥、均匀薄膜进行水合作用,很容易生成自组装的聚合物脂质体,其膜内以规定的摩尔比包含疏水性荧光团。PBFs的尺寸依赖性光谱特性使得能够通过光学方法轻松验证(稳态吸收和发射光谱)囊泡膜负载的程度,并能够描绘膜间分子相互作用。分别通过低温透射电子显微镜(cryo-TEM)和微量移液器抽吸进一步评估PBF膜负载对聚合物脂质体热力学和机械稳定性的最终影响。我们证明,聚合物脂质体可以以高达10 mol/wt%的浓度负载与大型药物缀合物尺寸相当的疏水分子(长度范围为1.4 - 5.4 nm,分子量为0.7 - 5.4 kg/mol),而不会显著损害这些合成囊泡组装体强大的热力学和机械稳定性。由于膜的结合,疏水性封装剂有效地防止了自聚集,能够在水溶液中高度浓缩,并成功地免受有害的环境相互作用。总之,这些研究提出了一种通用的范例,用于通过协同自组装在介观尺度上生成结合亲水性和疏水性试剂的复杂多功能材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验