Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.
Trends Parasitol. 2020 Sep;36(9):727-734. doi: 10.1016/j.pt.2020.06.002. Epub 2020 Jul 14.
Despite the benefits of phototrophy, many algae have lost photosynthesis and have converted back to heterotrophy. Parasitism is a heterotrophic strategy, with apicomplexans being among the most devastating parasites for humans. The presence of a nonphotosynthetic plastid in apicomplexan parasites suggests their phototrophic ancestry. The discovery of related phototrophic chromerids has unlocked the possibility to study the transition between phototrophy and parasitism in the Apicomplexa. The chromerid Chromera velia can live as an intracellular parasite in coral larvae as well as a free-living phototroph, combining phototrophy and parasitism in what I call photoparasitism. Since early-branching apicomplexans live extracellularly, their evolution from an intracellular symbiont is unlikely. In this opinion article I discuss possible evolutionary trajectories from an extracellular photoparasite to an obligatory apicomplexan parasite.
尽管光养具有诸多益处,但许多藻类已失去光合作用,转而进行异养生活。寄生是一种异养策略,顶复门生物是对人类最具破坏性的寄生虫之一。顶复门寄生虫中存在非光合质体表明它们具有光养的祖先。相关光合 chromerids 的发现为研究 Apicomplexa 中光合作用和寄生之间的转变提供了可能性。 chromerid Chromera velia 可以在珊瑚幼虫中作为细胞内寄生虫以及自由生活的光合生物生存,将光合作用和寄生结合在一起,我称之为光寄生。由于早期分支的顶复门生物在细胞外生活,它们从细胞内共生体进化而来的可能性不大。在这篇观点文章中,我讨论了从细胞外光寄生生物到专性顶复门寄生虫的可能进化轨迹。