Department of Information and Industrial Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
Department of Information and Industrial Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
Neural Netw. 2020 Oct;130:176-184. doi: 10.1016/j.neunet.2020.06.026. Epub 2020 Jul 3.
Although deep learning exhibits advantages in various applications involving multimodal data, it cannot effectively solve the class-imbalance problem. Herein, we propose a hybrid neural network with a cost-sensitive support vector machine (hybrid NN-CSSVM) for class-imbalanced multimodal data. We used a fused multiple-network structure obtained by extracting the features of different modality data, and used cost-sensitive support vector machines (SVMs) as a classifier. To alleviate the insufficiency of learning from minority-class data, our proposed cost-sensitive SVM loss function reflects different weights of misclassification errors from both majority and minority classes, by controlling cost parameters. Additionally, we present a theoretical setting of the cost parameters in our model. The proposed model is validated on real datasets that range from low to high imbalance ratios. By exploiting the complementary advantages of two architectures, the hybrid NN-CSSVM performs excellently, even with data having a minor-class proportion of only 2%.
虽然深度学习在涉及多模态数据的各种应用中表现出优势,但它不能有效地解决类别不平衡问题。在此,我们提出了一种具有成本敏感支持向量机(hybrid NN-CSSVM)的混合神经网络,用于处理类别不平衡的多模态数据。我们使用了一种融合的多网络结构,通过提取不同模态数据的特征,并使用成本敏感支持向量机(SVM)作为分类器。为了缓解从少数类数据学习的不足,我们提出的成本敏感 SVM 损失函数通过控制成本参数,反映了来自多数类和少数类的误分类错误的不同权重。此外,我们还提出了模型中成本参数的理论设置。我们的模型在从低到高不平衡比的真实数据集上进行了验证。通过利用两种架构的互补优势,混合 NN-CSSVM 表现出色,即使数据的少数类比例仅为 2%。