Suppr超能文献

一种基于混合图像增强的脑部磁共振成像图像分类技术。

A hybrid image enhancement based brain MRI images classification technique.

作者信息

Ullah Zahid, Farooq Muhammad Umar, Lee Su-Hyun, An Donghyeok

机构信息

Department of Computer Engineering, Changwon National University, Changwon, South Korea.

University Institute of Information Technology - PMAS Arid Agriculture University, Rawalpindi, Pakistan.

出版信息

Med Hypotheses. 2020 Oct;143:109922. doi: 10.1016/j.mehy.2020.109922. Epub 2020 Jun 4.

Abstract

The classification of brain magnetic resonance imaging (MRI) images into normal and abnormal classes, has great potential to reduce the radiologists workload. Statistical analysis based approaches has been widely employed for this purpose which are comprised of four stages such as pre-processing, feature extraction, feature reduction and classification. The outcome of such approaches are highly dependent upon the image quality: better the image, higher the outcome. In this paper, we present a hypothesis that the quality of the image, which is enhanced at the pre-processing stage, can play a significant role in enhancing the classification performance of any statistical approach. To strengthen our theory we first employed an improved image enhancement technique, which consists of three different sub-stages: noise removal using median filter, contrast enhancement using histogram equalization technique and image conversion from gray-scale to RGB. After image enhancement, we extract features from an enhanced MR brain image using a discrete wavelet transform and these feature are further reduced by color moments i.e mean, standard deviation, and skewness. Finally, we trained an advanced deep neural network (DNN) to categorize the human brain MRI images as normal or pathological. The approach obtained 95.8% which is significantly higher than the previous state-of-the-art techniques. The result evident that our hypothesis about the role of image enhancement process in medical image classification, is realistic and also have potential to improve the performance of other medical image analysis technique.

摘要

将脑磁共振成像(MRI)图像分为正常和异常类别,对于减轻放射科医生的工作量具有巨大潜力。基于统计分析的方法已广泛用于此目的,这些方法包括预处理、特征提取、特征约简和分类四个阶段。此类方法的结果高度依赖于图像质量:图像质量越好,结果越高。在本文中,我们提出一个假设,即在预处理阶段得到增强的图像质量,在提高任何统计方法的分类性能方面可以发挥重要作用。为了强化我们的理论,我们首先采用了一种改进的图像增强技术,该技术由三个不同的子阶段组成:使用中值滤波器去除噪声、使用直方图均衡化技术增强对比度以及将图像从灰度转换为RGB。图像增强后,我们使用离散小波变换从增强后的脑磁共振图像中提取特征,并且这些特征通过颜色矩(即均值、标准差和偏度)进一步约简。最后,我们训练了一个先进的深度神经网络(DNN)来将人脑MRI图像分类为正常或病变。该方法获得了95.8%的准确率,显著高于先前的最先进技术。结果表明,我们关于图像增强过程在医学图像分类中的作用的假设是现实的,并且也有潜力提高其他医学图像分析技术的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验