Suppr超能文献

基于人工智能分类的脑肿瘤诊断最新进展综述

A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification.

作者信息

Kaifi Reham

机构信息

Department of Radiological Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah City 22384, Saudi Arabia.

King Abdullah International Medical Research Center, Jeddah City 22384, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Sep 20;13(18):3007. doi: 10.3390/diagnostics13183007.

Abstract

Uncontrolled and fast cell proliferation is the cause of brain tumors. Early cancer detection is vitally important to save many lives. Brain tumors can be divided into several categories depending on the kind, place of origin, pace of development, and stage of progression; as a result, tumor classification is crucial for targeted therapy. Brain tumor segmentation aims to delineate accurately the areas of brain tumors. A specialist with a thorough understanding of brain illnesses is needed to manually identify the proper type of brain tumor. Additionally, processing many images takes time and is tiresome. Therefore, automatic segmentation and classification techniques are required to speed up and enhance the diagnosis of brain tumors. Tumors can be quickly and safely detected by brain scans using imaging modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and others. Machine learning (ML) and artificial intelligence (AI) have shown promise in developing algorithms that aid in automatic classification and segmentation utilizing various imaging modalities. The right segmentation method must be used to precisely classify patients with brain tumors to enhance diagnosis and treatment. This review describes multiple types of brain tumors, publicly accessible datasets, enhancement methods, segmentation, feature extraction, classification, machine learning techniques, deep learning, and learning through a transfer to study brain tumors. In this study, we attempted to synthesize brain cancer imaging modalities with automatically computer-assisted methodologies for brain cancer characterization in ML and DL frameworks. Finding the current problems with the engineering methodologies currently in use and predicting a future paradigm are other goals of this article.

摘要

不受控制的快速细胞增殖是脑肿瘤的病因。早期癌症检测对于挽救许多生命至关重要。脑肿瘤可根据种类、起源部位、发展速度和进展阶段分为几类;因此,肿瘤分类对于靶向治疗至关重要。脑肿瘤分割旨在准确勾勒出脑肿瘤区域。需要一位对脑部疾病有透彻了解的专家来手动识别脑肿瘤的正确类型。此外,处理大量图像既耗时又繁琐。因此,需要自动分割和分类技术来加快和加强脑肿瘤的诊断。使用包括计算机断层扫描(CT)、磁共振成像(MRI)等在内的成像模态,通过脑部扫描可以快速、安全地检测肿瘤。机器学习(ML)和人工智能(AI)在开发利用各种成像模态辅助自动分类和分割的算法方面已显示出前景。必须使用正确的分割方法来精确分类脑肿瘤患者,以加强诊断和治疗。这篇综述描述了多种类型的脑肿瘤、公开可用的数据集、增强方法、分割、特征提取、分类、机器学习技术、深度学习以及通过迁移学习来研究脑肿瘤。在本研究中,我们试图在ML和DL框架中,将脑癌成像模态与用于脑癌特征描述的自动计算机辅助方法相结合。找出当前使用的工程方法存在的问题并预测未来的范式也是本文的其他目标。

相似文献

1
A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification.
Diagnostics (Basel). 2023 Sep 20;13(18):3007. doi: 10.3390/diagnostics13183007.
2
A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors.
Comput Methods Programs Biomed. 2021 Mar;200:105797. doi: 10.1016/j.cmpb.2020.105797. Epub 2020 Oct 31.
3
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449.
5
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation.
IEEE J Transl Eng Health Med. 2022 May 23;10:1800508. doi: 10.1109/JTEHM.2022.3176737. eCollection 2022.
6
Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools.
Comput Biol Med. 2023 Jan;152:106405. doi: 10.1016/j.compbiomed.2022.106405. Epub 2022 Dec 7.
7
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.
Diagnostics (Basel). 2022 Oct 19;12(10):2535. doi: 10.3390/diagnostics12102535.
8
Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm.
Comput Biol Med. 2020 Jul;122:103804. doi: 10.1016/j.compbiomed.2020.103804. Epub 2020 May 30.
10
A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned.
Magn Reson Imaging. 2019 Sep;61:300-318. doi: 10.1016/j.mri.2019.05.028. Epub 2019 Jun 5.

引用本文的文献

2
A novel hybrid vision UNet architecture for brain tumor segmentation and classification.
Sci Rep. 2025 Jul 3;15(1):23742. doi: 10.1038/s41598-025-09833-y.
5
AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis.
Discov Oncol. 2025 Mar 13;16(1):313. doi: 10.1007/s12672-025-02064-7.
6
Nanophotonic-enhanced photoacoustic imaging for brain tumor detection.
J Nanobiotechnology. 2025 Mar 5;23(1):170. doi: 10.1186/s12951-025-03204-5.
7
Applications of artificial intelligence and advanced imaging in pediatric diffuse midline glioma.
Neuro Oncol. 2025 Jul 30;27(6):1419-1433. doi: 10.1093/neuonc/noaf058.
10
Revolutionizing diagnosis of pulmonary based on CT: a systematic review of imaging analysis through deep learning.
Front Microbiol. 2025 Jan 8;15:1510026. doi: 10.3389/fmicb.2024.1510026. eCollection 2024.

本文引用的文献

1
Hybrid Optimization Algorithm Enabled Deep Learning Approach Brain Tumor Segmentation and Classification Using MRI.
J Digit Imaging. 2023 Jun;36(3):847-868. doi: 10.1007/s10278-022-00752-2. Epub 2023 Jan 9.
2
A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN and Bayesian Optimization.
Healthcare (Basel). 2022 Mar 8;10(3):494. doi: 10.3390/healthcare10030494.
3
Classification of Gliomas and Germinomas of the Basal Ganglia by Transfer Learning.
Front Oncol. 2022 Mar 3;12:844197. doi: 10.3389/fonc.2022.844197. eCollection 2022.
4
Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine.
Comput Math Methods Med. 2022 Feb 7;2022:7137524. doi: 10.1155/2022/7137524. eCollection 2022.
6
A Survey of Brain Tumor Segmentation and Classification Algorithms.
J Imaging. 2021 Sep 6;7(9):179. doi: 10.3390/jimaging7090179.
7
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
8
A Transfer Learning-Based Active Learning Framework for Brain Tumor Classification.
Front Artif Intell. 2021 May 17;4:635766. doi: 10.3389/frai.2021.635766. eCollection 2021.
10
A comparative study for glioma classification using deep convolutional neural networks.
Math Biosci Eng. 2021 Jan 29;18(2):1550-1572. doi: 10.3934/mbe.2021080.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验