Suppr超能文献

基于 MFO 神经网络的 MRI 图像下心电疾病分类。

Classification of Heart Disease Using MFO Based Neural Network on MRI Images.

机构信息

Department of Computer Science and Engineering, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India.

出版信息

Curr Med Imaging. 2021;17(9):1114-1127. doi: 10.2174/1573405617666210126153920.

Abstract

BACKGROUND

Cardiovascular Disease (CVD) is one of the primary diseases that causes death every year. An approximation of roughly about 17.5 million people dies due to CVD, signifying about 31% of global deaths. Based on the statistics, every 34 seconds, a person dies due to heart disease. Various classification algorithms have been developed and utilized as classifiers to support doctors who are ineffectually diagnosed with heart disease.

AIMS

The main aim of this work is to improve the performance of the heart disease approach using image processing algorithm. To improve the effectiveness and efficiency of classification performance for heart disease diagnosis, an optimized neural network was proposed based on the feature extraction and selection approach for handling features.

OBJECTIVE

The objective of this investigation is to diagnose heart diseases using feature extraction, reduction based classification and image processing methods. The proposed model comprises of two subsets: Feature extraction using gray scale properties and Moth flame optimization (MFO) for effectual feature selection, followed by a classification technique using Generalized Regression Neural Network. The first system includes three stages: (i) Pre-processing of the dataset (ii) feature extraction (iii) performing MFO for efficient selection. In the second method, GRNN is proposed. The heart data set obtained from ACDC Challenge, was utilized for performing the computation.

METHODS

The image obtained from the MRI-scanner is in the NIfTI image format. The pre-process step used in this is to convert the image type from INT16 to uint8 to improve the quality of image viewing and for feature extraction process. In this phase, the texture properties from the pre-processed image are calculated and the value is in the numeric format. These values are the feature attributes of the dataset. The feature attributes of the image are given as input for the moth flame optimization process and output is the feature selected from the optimization process. The whole process is performed on the feature attributes of the image by determining the optimal feature for the classifier by reducing its error rate. The optimal feature from the moth flame optimization is used for training and testing the network. The classifier used in this approach is a single neural network classifier with a regression nature. Due to the regression property, the network is well trained with the feature. The Generalized regression neural network is used for classifying heart diseases.

RESULTS

The proposed method achieves the accuracy of 96.23%, sensitivity of 95.41% and specificity of 96.75%. These values are calculated based on the confusion matrix of the classifier.

CONCLUSION

In this, the feature extraction using the gray scale properties plays an important role to determine the feature attributes from the MRI heart images. The Moth flame optimization able to produce an accuracy of 97.23% using GRNN for classification with minimum single attribute mean of the image. It also outperformed the other methods, either the feature extraction based classification or the feature reduction based classification.

摘要

背景

心血管疾病(CVD)是每年导致死亡的主要疾病之一。大约有 1750 万人因 CVD 而死亡,约占全球死亡人数的 31%。根据统计数据,每 34 秒就有一人死于心脏病。已经开发并使用了各种分类算法作为分类器,以支持诊断效果不佳的心脏病医生。

目的

本研究的主要目的是通过图像处理算法提高心脏病的性能。为了提高心脏病诊断的分类性能的有效性和效率,提出了一种基于特征提取和选择方法的优化神经网络,用于处理特征。

目标

本研究旨在使用特征提取、基于分类的降维和图像处理方法诊断心脏病。所提出的模型由两个子集组成:使用灰度属性和 moth 火焰优化(MFO)进行有效特征选择的特征提取,以及使用广义回归神经网络进行分类的方法。第一个系统包括三个阶段:(i)数据集的预处理(ii)特征提取(iii)使用 MFO 进行有效的选择。在第二种方法中,提出了 GRNN。从 ACDC 挑战赛中获得的心脏数据集用于执行计算。

方法

从 MRI 扫描仪获得的图像采用 NIfTI 图像格式。在这个阶段,使用的预处理步骤是将图像类型从 INT16 转换为 uint8,以提高图像查看质量和特征提取过程。在这个阶段,从预处理后的图像中计算出纹理属性,其值为数字格式。这些值是数据集的特征属性。将图像的特征属性作为 moth 火焰优化过程的输入,输出是从优化过程中选择的特征。通过确定分类器的最优特征来减少其错误率,对图像的特征属性进行整个过程。来自 moth 火焰优化的最优特征用于训练和测试网络。在这种方法中使用的分类器是具有回归性质的单个神经网络分类器。由于回归性质,网络可以很好地训练特征。广义回归神经网络用于心脏病的分类。

结果

所提出的方法达到了 96.23%的准确率、95.41%的敏感性和 96.75%的特异性。这些值是根据分类器的混淆矩阵计算得出的。

结论

在这篇文章中,使用灰度属性的特征提取在确定从 MRI 心脏图像的特征属性方面起着重要作用。 moth 火焰优化能够使用 GRNN 产生 97.23%的准确率,对图像的单个属性均值进行分类,达到最佳效果。它也优于其他方法,无论是基于特征提取的分类还是基于特征减少的分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验